

Loongson 3A1000 processor user's
manual

Part ii

GS464 processor core V1.4

In October 2015

Loongson technology co. LTD

 龙芯 3A1000 处理器用户手册下册

Copyright statement
The copyright of this document belongs to loongson technology co., LTD. All rights

reserved. No company or individual may make public, reprint or otherwise distribute any

portion of this document to a third party without written permission. Otherwise, will pursue

its legal responsibility certainly.

disclaimer
This document only provides periodic information, and the content can be updated at any

time according to the actual situation of the product without prior notice. The company shall

not be liable for any direct or indirect loss caused by improper use of the documents.

Loongson technology co. LTD

Loongson Technology Corporation Limited

Address: Loongson Industrial Park, Building No. 2, loongson

Industrial Park, zhongguancun environmental science and

technology demonstration Park, haidian district, Beijing

Zhongguancun Environmental Protection Park, Haidian District, Beijing

Tel: 010-62546668 Fax: 010-

62600826

 龙芯 3A1000 处理器用户手册下册

Reading guide

Loongson 3A1000 processor user manual is divided into volume 1 and volume 2.

Loongson 3A1000 processor user's manual is divided into two parts. The first part (chapter 1 ~

chapter 10) introduces loongson 3A1000 multi-core processor architecture and register

description, and gives a detailed description of chip system architecture, functions and

configuration of main modules, register list and bit domain.The second part (chapter 11 ~ chapter

16) is the system software programming guide, which introduces the common problems in the

development of BIOS and operating system.

The second volume of loongson 3A1000 processor user manual introduces in detail the GS464

high-performance processor core adopted by loongson 3A1000 from the perspective of system

software developers.

 龙芯 3A1000 处理器用户手册下册

4

目录
Part ii .. 1

2.1 MIPS64 compatible instruction list ... 17
2.2 MIPS64 compatible instruction implementation related instructions 26
2.3 Custom extension instructions ... 30
3 CP0 control register ... 36
3.1 Index register (0,0) .. 38
3.2 Random register (1,0) .. 39
3.3 EntryLo0 (2,0) and EntryLo1 (3,0) registers .. 39
3.4 The Context (4, 0) .. 41
3.5 PageMask register (5,0) .. 42
3.6 PageGrain register (5,1) .. 43
3.7 Wired register (6,0) ... 44
3.8 HWREna register (7, 0) .. 45
3.9 BadVAddr register (8,0) .. 45
3.10 The Count register (9,0) and the Compare register (11,0) .. 47
3.11 EntryHi register (10,0) ... 47
3.12 Status register (12,0) ... 48
3.13 IntCtl register (12,1) ... 51
3.14 SRSCtl register (12,2) ... 53
3.15 Cause register (13,0) ... 53
3.16 Exception Program Counter register (14,0) ... 57
3.17 Processor Revision Identifier (PRID) register (15,0) .. 57
3.18 EBase register (15,1) .. 58
3.19 Config register (16,0) .. 59
3.20 Config1 register (16,1) ... 60
3.21 Config 2 register (16,2) .. 63
3.22 Config 3 register (16,3) .. 65
3.23 Load Linked Address (LLAddr) register (17,0) .. 68
3.24 XContext register (20,0) .. 68
3.25 Diagnostic register (22,0) ... 70
3.26 Debug register (23,0) .. 70
3.27 Debug Exception Program Counter register (24,0) ... 57
3.28 Performance Counter register (25, 0/1/2/3) ... 57
3.29 ECC register (26,0) .. 60
3.30 CacheErr register (27, 0/1) .. 60
3.31 The TagLo(28) and TagHi (29) registers ... 62
3.32 Registers DataLo (28,1) and DataHi (29,1) ... 63
3.33 ErrorEPC register (30,0) .. 64
3.34 DESAVE register (31,0) .. 64
3.35 CP0 instruction ... 64
4 Organization and operation of a CACHE ... 66
4.1 Summary of the Cache ... 66
4.2 First-order instruction Cache ... 68
4.3 Level 1 data Cache ... 72
4.4 Level 2 Cache ... 73
4.5 Cache algorithm and Cache consistency properties ... 75
4.6 The Cache consistency ... 77
5 Memory management .. 80

 龙芯 3A1000 处理器用户手册下册

5

5.1 Quick lookup of table TLB ... 80
5.2 Processor mode... 81
5.3 Address space .. 83
5.4 System control coprocessor ... 91
5.5 Physical address space distribution ... 97
6 Processor exception.. 88
6.1 Exceptions are generated and returned ... 88
6.2 Exception vector position ... 88
6.3 Exception priority ... 89
6.4 Cold reset exception ... 90
6.5 NMI exception ... 91
6.6 Address error exception .. 93
6.7 TLB exception ... 93
6.8 TLB refills the exception ... 94
6.9 TLB invalid exception ... 96
6.10 TLB modification is an exception .. 96
6.11 Cache error exception .. 97
6.12 Bus error exception ... 98
6.13 The exception is integer overflow .. 99
6.14 Trap exceptions .. 99
6.15 System call exception ... 100
6.16 Breakpoint exception ... 101
6.17 Exception to reserved instruction .. 102
6.18 Floating-point exception ... 104
6.19 EJTAG exception .. 104
6.20 Interrupt exception ... 104
7 Floating point coprocessor ... 107
7.1 An overview of the ... 107
7.2 FPU register .. 109
7.3 Floating-point instructions ... 119
7.4 Floating point part format .. 125
7.5 Overview of FPU instruction pipeline .. 128
7.6 Floating point exception handling ... 129
8 Performance analysis and optimization .. 136
8.2 Instruction expansion and usage considerations ... 137
8.5 Memory access .. 143

 龙芯 3A1000 处理器用户手册下册

6

Revision history

Document update record

The
document

name:

Loongson 3A1000 processor
user's manual

- part ii

The version
number

V1.4

The
founders:

Research and development
center

Date of
creation:

2015-10-08

Update history

The
seria

l
num
ber

Updated
date

Update
one

The
version
numbe

r

Update
the

content

1 2011-06-24 Research
and

developm
ent center

V1.0 To complete the first draft of the

2 2011-10-18 Research
and

developm
ent center

V1.1 Review and proofread

3 2011-11-24 Research
and

developm
ent center

V1.2 Modify the cover

4

2012-04-28

Research

and
developm
ent center

V1.3

Fixed a 48-bit address space related error in
chapter 5, "memory management"

5 2015-10-08 Research
and

developm
ent center

V1.4 Modify the instruction description in chapters 2 and
7

Manual information feedback: service@loongson.cn

 龙芯 3A1000 处理器用户手册下册

12

1 Summary of structure

The GS464 is a general-purpose RISC processor IP that implements the 64-bit MIPS64

instruction set.GS464's instruction pipeline decoded four instructions per clock cycle and

dynamically transmitted them to five all-flowing functional units.Although instructions are

executed out of order on the premise of ensuring dependencies, they are delivered in the

original order of the program to ensure precise exception and access order.

The superscalar structure of four emission makes the problems related to instruction and

data in the instruction pipeline very prominent. GS464 adopts out-of-order execution

technology and radical storage system design to improve the efficiency of the pipeline.

The techniques of out-of-order execution include register renaming, dynamic scheduling

and transfer prediction. Register renaming solves the WAR (read after write) and WAW (write

after write) correlation, and is used for accurate field recovery caused by exception and error

transition predictions. GS464 renaming fixed point and floating point registers through a 64-

item physical register heap, respectively.Dynamic scheduling according to the instruction

operand ready order rather than instructions in a program in order to carry out instructions,

reduces the RAW (writing after reading) caused by obstruction, GS464 has a 16 fixed-point

retain stand and a 16 floats used in order to launch, and through a 64 item of the Reorder queue

(hereinafter referred to as ROQ) to realize random sequence of instructions submitted in

accordance with the procedure of the order.Transfer prediction reduces the blocking caused by

control correlation by predicting whether the transfer instruction jumps successfully. GS464

USES Branch Target Buffer (BTB) of 16 items, Branch History Table (BHT) of 2K items,

Global Histiry Registor (GHR) of 9 bits,

And the Return Address Stack (RAS) of four items.

GS464 advanced storage system design can effectively improve the efficiency of the

pipeline.GS464's first-level Cache consists of a 64KB instruction Cache and a 64KB data

Cache.GS464 has 64 TLBS in a fully associative structure, each of which maps to an odd page

and an even page, with page sizes ranging from 4KB to 16MB. GS464 solves address

dependency dynamically by means of the 24 item retrieval Queue and the 8 item retrieval

failure Queue, and realizes the out-of-order execution of retrieval operation, non-blocking

Cache, Load Speculation and other retrieval optimization techniques. GS464 supports 128-bit

memory access, with 48 bit virtual and physical addresses.

 龙芯 3A1000 处理器用户手册下册

13

The GS464 has two fixed-point features and two floating point features. Each floating

point part can execute 64 in full flow

Double-precision floating-point multiplication and addition operations, and through the

extension of the FMT domain of floating-point instructions to execute 32-bit and 64-bit fixed-

point instructions.

GS464 supports the EJTAG debugging specification of MIPS company, and adopts the

standard AXI interface. Its instruction Cache implements parity check and data Cache

implements ECC check.The above features can increase the applicability of GS464.

The basic pipeline of GS464 includes taking the index, pre-decoding, decoding, register

renaming, scheduling, transmitting, reading register,

 龙芯 3A1000 处理器用户手册下册

14

There are 9 levels of execution and submission, and each level of flow includes the

following operations.

Fetch refers to the pipeline level with the program counter PC value to access the

instruction Cache and instruction TLB, if the instruction Cache

When both TLB and TLB are hit, four new instructions are fetched into the instruction

register IR.

Predecoding stream level mainly decodes the transfer instruction and predicts the

direction of the jump.

The decoding stream level converts the four instructions in the IR into the internal

instruction format of GS464 and sends them to the register rename module.

Register renaming flow level allocates a new physical register for the logical target

register and maps the logical source register to the physical register most recently assigned to

the logical register.

The scheduling flow level will assign the renamed instruction to a fixed point or floating

point reservation station for execution, and send it to ROQ for sequential submission after

execution.In addition, transfer instruction and access instruction are sent to transfer queue and

access queue respectively.

The transmitting stream stage selects an instruction prepared for all operands from a fixed

point or floating point reservation station for each feature;An instruction whose operands are

not ready at rename time waits for its operands to be ready by listening for the result bus and

the forward bus.

The read register flow level is where the transmitted instruction reads the corresponding

source operand from the physical register heap to the corresponding functional unit.

The execution flow level executes the instruction according to the type of instruction and

writes the result back to the register heap.The resulting bus is also sent to the reserved station

and register renaming tables to notify that the corresponding register values are available.

Submit the order of the water level in accordance with the procedures the Reorder queue

record submit instruction has been performed, most GS464 per picture can submit four

instruction, submitted instructions to register renaming table to confirm the destination register

 龙芯 3A1000 处理器用户手册下册

15

renaming of relationships and release the originally assigned to the same physical register of

logic registers, and sent to fetch queue allows those submitted by the number of instructions

or write to the Cache memory.

The above is the flow level of basic instructions. For some more complex instructions,

such as fixed-point multiplication and division instructions, floating point instructions and

memory access instructions, multi-beat is required in the execution stage.The basic structure

of GS464 is shown in the figure below.

 龙芯 3A1000 处理器用户手册下册

16

Figure 1-1 basic structure of GS464 processor

The Tag

The Register
Mapper

Decode Bus

The Pre -

Th
PC +

 EJTAG TAP Controller

Test Interface JTAG Interface AXI Interface clock, reset, int, …

Test Controller

dmemwrite
dmemread, duncache

Refill Bus
imemread

ICache
DTLB

CP0
Queue

ITLB

AGU

BHT
DCACHE ALU2

Integer

Register

File

Fix
Queue

ALU1 BTB

Map Bus

Write back Bus
Branch Bus

Commit Bus Godson-2 IP Architecture

FPU2

FPU1
Floating

Point

Register
File

Float
Queue

Processor Interface

missq

Reorder Queue

BRQ

wtbkqueue ucqueue

ROQ

 龙芯 3A1000 处理器用户手册下册

17

2 Overview of core instruction set for loongson GS464 processor

The loongson GS464 processor core is compatible with the MIPS64 R2 architecture,

which implements the full set of required instructions defined by the MIPS64 R2 specification,

as well as some custom extension instructions.

The MIPS64 R2 compatible instructions implemented by the loongson GS464 processor

core are listed in section 2.1.Due to the length, the detailed definition of this part of the

instruction is not given in this document.The reader needs to know the detailed definition of

the instructions and is advised to refer to volume I and volume II of version 2.50 of the MIPS

architecture specification.The implementations-related contents in this part of the instructions

will be explained in section 2.2. In addition, the implementation of several MIPS64 R2

instructions GS464 processor core is not consistent with the MIPS architecture specification,

which is also explained in section 2.2.

The custom extension instructions implemented by the loongson GS464 processor core

are listed in section 2.3.Due to the length, the detailed definition of this part of the instruction

is not given in this document.Readers really need to understand the detailed definition of the

relevant instructions, it is recommended to consult the loongson instruction system

manual.Loongson command system manual is currently available only to authorized

customers.

2.1 MIPS64 compatible instruction list

According to the instruction function, MIPS64 compatible instructions implemented by

GS464 processor core can be divided into the following groups:

 To fetch instruction

 Operation instruction

 Branch and jump instructions

 Coprocessor instruction

 Other instructions

2.1.1 To fetch instruction

The MIPS architecture USES a load/store architecture. All operations are performed on

the register, and only the access instruction can access the data in main memory.Access

 龙芯 3A1000 处理器用户手册下册

18

instruction includes reading and writing, unsigned reading, unaligned access and atomic access

of data of various widths.

Table 2-1 CPU instruction set: memory access instruction

Instruction
mnemonics

Command
function

description

ISA
compatibility

level

LB In bytes MIPS32

LBU Take the unsigned byte MIPS32

 龙芯 3A1000 处理器用户手册下册

19

Instruction
mnemonics

Command
function

description

ISA
compatibility

level

LH Take half word MIPS32

LHU Take an unsigned half word MIPS32

LW Take the word MIPS32

LWU Take an unsigned word MIPS32

LWL Take words left MIPS32

LWR Take the words right MIPS32

LD Take double word MIPS64

LDL Take the left part of the word MIPS64

LDR Take the right part of the word MIPS64

LL Take the address of the mark MIPS32

LLD Take the double word address of the mark MIPS64

SB Remaining bytes MIPS32

SH Save half word MIPS32

SW characters MIPS32

SWL Characters left MIPS32

SWR To save words right MIPS32

SD Save double word MIPS64

SDL Save the left part of the double word MIPS64

The SDR Save the right part of the double word MIPS64

SC I'm going to save it MIPS32

SCD Save two words under the condition MIPS64

2.1.2 Operation instruction

Operational instructions perform arithmetic, logic, shift, multiplication, and division of

register values.Operational instructions include the register instruction format (r-type, where

operands and operation results are stored in registers) and the immediate-number instruction

format (i-type, where one operand is a 16-bit immediate-number)

Table 2-2 CPU instruction set: arithmetic instruction (ALU instant number)

Instruction
mnemonics

Command
function

description

ISA
compatibility

level

ADDI Add number immediately MIPS32

 龙芯 3A1000 处理器用户手册下册

20

DADDI Add a double word instant number MIPS64

Instruction
mnemonics

Command
function

description

ISA
compatibility

level

ADDIU Add an unsigned immediate number MIPS32

DADDI
U

Add an unsigned word immediate number MIPS64

SLTI Less than immediate number setting MIPS32

SLTIU Unsigned less than immediate number setting MIPS32

ANDI And immediately MIPS32

ORI Or the number immediately MIPS32

XORI Xor immediate number MIPS32

LUI Count immediately to a high position MIPS32

Table 2-3 CPU instruction set: arithmetic instruction (3 operands)

Instruction
mnemonics

Command
function

description

ISA
compatibility

level

The
ADD

add MIPS32

DADD Double word plus MIPS64

ADDU Unsigned add MIPS32

DAD
DU

Unsigned double word plus MIPS64

SUB Reduction of MIPS32

DSUB Double word cut MIPS64

SUBU Unsigned reduction MIPS32

DSUB
U

Unsigned double minus MIPS64

SLT Less than the set MIPS32

SLTU Unsigned less than setting MIPS32

The
AND

with MIPS32

The OR or MIPS32

XOR Exclusive or MIPS32

NOR Or not MIPS32

Table 2-4 CPU instruction set: arithmetic instruction (2 operands)

Instruction
mnemonics

Command
function

ISA
compatibility

 龙芯 3A1000 处理器用户手册下册

21

description level

CLO The number of words leading to 1 MIPS32

DCLO Double word leader 1 number MIPS64

CLZ The number of leading characters is 0 MIPS32

DCLZ The number of words leading to 0 MIPS64

WSBH Half-word byte swapping MIPS32 R2

DSHD Word half word exchange MIPS64 R2

SEB Byte symbol extension MIPS32 R2

SEH Half-character extensions MIPS32 R2

INS An insert MIPS32 R2

EXT An extract MIPS32 R2

DINS Binary insertion MIPS64 R2

DINSM Binary insertion MIPS64 R2

DINSU Binary insertion MIPS64 R2

DEXT Binary bit extraction MIPS64 R2

DEXTM Binary bit extraction MIPS64 R2

DEXTU Binary bit extraction MIPS64 R2

Table 2-5 CPU instruction sets: multiplication and division instructions

Instruction
mnemonics

Command
function

description

ISA compatibility
level

The MUL Multiply to the general register MIPS32

MULT take MIPS32

DMULT Double word by MIPS64

MULTU Unsigned by MIPS32

DMUL
TU

Unsigned double word multiplication MIPS64

MADD By adding MIPS32

MADD
U

Unsigned multiplication and addition MIPS32

MSUB By reducing MIPS32

MSUBU Unsigned multiplication and subtraction MIPS32

DIV In addition to MIPS32

DDIV Double word except MIPS64

DIVU Unsigned except MIPS32

DDIVU Unsigned double word division MIPS64

 龙芯 3A1000 处理器用户手册下册

22

MFHI Fetch from the hi register to the universal
register

MIPS32

MTHI Save from the general purpose register to the hi
register

MIPS32

MFLO Take the number from register lo to the general
register

MIPS32

MTLO Save from the general register to the lo register MIPS32

Table 2-6 CPU instruction set: shift instruction

Instruction
mnemonics

Command
function

description

ISA
compatibility

level

SSL The logical left MIPS32

SRL Logic moves to the right MIPS32

SRA Arithmetic moves to the right MIPS32

SLLV Variable logic moves left MIPS32

SRLV Variable logical shift to the right MIPS32

SRAV Variable arithmetic shift to the right MIPS32

ROTR Cycle moves to the right MIPS32
R2

ROTRV Variable cycle shift to the right MIPS32
R2

DSLL Double word logic moves left MIPS64

DSRL Double word logic moves to the right MIPS64

DSRA Double word arithmetic shift to the right MIPS64

DSLLV Variable double word logic moves left MIPS64

DSRLV Variable word logic right shift MIPS64

DSRAV Variable double word arithmetic shift to the right MIPS64

DSLL32 Double word logic moves left +32 MIPS64

DSRL32 Double word logic moves to the right +32 MIPS64

DSRA32 Double word arithmetic shift to the right +32 MIPS64

DROTR The word cycle moves to the right MIPS64
R2

DROTR
32

Double word loop moves right +32 MIPS64
R2

DROTRV Double word variable loop right shift MIPS64
R2

2.1.3 Branch and jump instructions

Branch and jump instructions can change the control flow of a program, including the

 龙芯 3A1000 处理器用户手册下册

23

following four types:

 PC relative conditional branch

 PC unconditional jump

 Register absolute jump

 Procedure call

In the MIPS definition, all transfer instructions are followed by a delay slot instruction.

The delay slot in the Likely transfer instruction is only executed when the transfer is

successful, and the non-likely transfer instruction always gets executed. The return address of

the procedure call instruction is saved in register 31 by default, and a jump according to

register 31 is considered to be returned from the called procedure.

Table 2-7 CPU instruction sets: jump and branch instructions

Instruction
mnemonics

Command
function

description

ISA
compatibility

level

J jump MIPS32

JAL Immediate count calls the procedure MIPS32

JR, Jump to the instruction that the register points
to

MIPS32

JR. HB Jump to the instruction that the register points
to

MIPS32 R2

JALR Register call procedure MIPS32

JALR. HB Register call procedure MIPS32 R2

BEQ Equal jump MIPS32

BNE Unequal jump MIPS32

BLEZ Less than or equal to 0 jumps MIPS32

BGTZ Greater than 0 jump MIPS32

BLTZ Less than 0 jump MIPS32

BGEZ Greater than or equal to 0 jump MIPS32

BLTZAL Less than 0 to call the procedure MIPS32

BGEZAL Greater than or equal to 0 MIPS32

BEQL Equal is Likely jump MIPS32

BNEL Not equal, Likely jump MIPS32

BLEZL Likely jump if less than or equal to 0 MIPS32

BGTZL Greater than 0 is Likely jump MIPS32

BLTZL Likely jump if less than 0 MIPS32

 龙芯 3A1000 处理器用户手册下册

24

BGEZL Likely jump if greater than or equal to 0 MIPS32

BLTZALL Less than 0 is Likely to call the procedure MIPS32

BGEZALL If greater than or equal to 0, Likely calls the
procedure

MIPS32

2.1.4 Coprocessor instruction

The coprocessor instruction completes the operation inside the coprocessor. The loongson

GS464 processor core has two coprocessors: coprocessor no. 0 (system processor) and

coprocessor no. 1 (floating point coprocessor).

The zero coprocessor (CP0) manages memory and handles exceptions through the register

of CP0. These instructions are listed in table 2-8

In the.

The MIPS architecture specification clearly defines floating point instructions in

coprocessor no. 1 (CP1) instructions. The godson

The implementation of floating point instructions in the coprocessor 1 instruction in the

GS464 processor core is described separately in chapter 7.

Table 2-8 CPU instruction set: CP0 instruction

Instruction
mnemonics

Command
function

description

ISA compatibility
level

DMFC0 Fetch a double word from register CP0 MIPS64

DMTC0 Write a double word to register CP0 MIPS64

MFC0 From the CP0 register MIPS32

MTC0 Write to register CP0 MIPS32

TLBR Read the TLB entry of the index MIPS32

TLBWI Write the TLB entry of the index MIPS32

TLBWR Let me write random TLB terms MIPS32

TLBP Search for matches in TLB MIPS32

The CACHE Cache operation MIPS32

ERET Abnormal return MIPS32

DI Disabling interrupts MIPS32 R2

 龙芯 3A1000 处理器用户手册下册

25

EI Allow the interrupt MIPS32 R2

2.1.5 Other instructions

In MIPS64, in addition to the above instructions listed above, there are some other

instructions, as shown in table 2-9 to table 2-12:

Table 2-9 CPU instruction sets: special instructions

Instruction
mnemonics

Command
function

description

ISA
compatibility

level

The SYSCALL The system calls MIPS32

BREAK The breakpoint MIPS32

The
SYNC

synchronous MIPS32

SYNCI Synchronous instruction cache MIPS32 R2

Table 2-10 CPU instruction sets: exception instructions

Instruction
mnemonics

Command
function

description

ISA compatibility
level

TGE Greater than or equal to entrapped MIPS32

TGEU Unsigned Numbers greater than or equal to
entrapped

MIPS32

TLT Less than a MIPS32

 龙芯 3A1000 处理器用户手册下册

26

Instruction
mnemonics

Command
function

description

ISA compatibility
level

TLTU The unsigned number is less than entrapped MIPS32

TEQ Is equal to a MIPS32

TNE Differ in MIPS32

TGEI Greater than or equal to immediately number
trapped

MIPS32

TGEIU Greater than or equal to an unsigned immediate
number

MIPS32

TLTI Less than immediately the number is trapped MIPS32

TLTIU Less than an unsigned number immediately sinks in MIPS32

TEQI Is equal to immediately the number sinks in MIPS32

TNEI Not equal to immediately number into MIPS32

Table 2-11 CPU instruction set: conditional move instructions

Instruction
mnemonics

Command
function

description

ISA
compatibility

level

MOVF The condition moves when the floating point condition
is false

MIPS32

MOVN The condition is moved when the universal register is
not 0

MIPS32

MOVT The condition moves when the floating point condition
is true

MIPS32

MOVZ The condition moves when the general register is 0 MIPS32

Table 2-12 CPU instruction sets: other instructions

Instruction
mnemonics

Command
function

description

ISA
compatibility

level

PREF Prefetching instructions MIPS32

PREFX Prefetching instructions MIPS32

The NOP Empty operation MIPS32

SSNOP Single launch air operation MIPS32

2.2 MIPS64 compatible instruction implementation related instructions

2.2.1 There are instructions for implementation differences

The loongson GS464 processor checks all MIPS64 R2 instructions for support, but

 龙芯 3A1000 处理器用户手册下册

27

redefines some implementation-related instructions, as shown in table 2-13.

There are instructions for implementation differences in table 2-13

Instruction
mnemonics

Command
function
description

Concrete
implementatio
n description

PREF

Prefetching
instructions

As NOP instruction processing, no prefetch effect.

Software prefetch can be achieved by Load to register 0.

PREFX

Prefetching
instructions

As NOP instruction processing, no prefetch effect.

Software prefetch can be achieved by Load to register 0.

SSNOP

Single launch air
operation

Treat as NOP instruction processing.

All data and control Hazards in GS464 are maintained by the

hardware without software control.

EHB

Isolation execution
correlation

Treat as NOP instruction processing.

All data and control Hazards in GS464 are maintained by the

hardware without software control.

WAIT

Enter a waiting
state

As NOP instruction processing, no pipeline stop effect.

Avoid using this instruction in code that involves low-power

management, which not only fails to achieve what the software

design expects, but may even cause increased power consumption.

RDPGPR

Read shadow
register

GS464 does not implement a shadow register, so both the source

register and the target register belong to the current register group.

WRPGPR

Write shadow
register

GS464 does not implement a shadow register, so both the source
register and the target register belong to it

In the current register group.

The
SYNC

synchronous

GS464 only implements the SYNC instruction for stype=0, except

for the SYNC instruction reserved for other values of stype. This

instruction ACTS as a memory barrier to ensure that the access

operation before SYNC has been confirmed (e.g., the data of the store

instruction is written to dcache, the read and write of uncached has

been completed, and the value has been retrieved to the register by

load), and the access operation after SYNC instruction has not been

started.The SYNC

The instruction requires CU[0] and is available only in kernel mode.

 龙芯 3A1000 处理器用户手册下册

28

Instruction
mnemonics

Command
function
description

Concrete
implementatio
n description

The
CACHE

Cache operation

There are two main differences between the CACHE instruction

implemented by GS464 and the MIPS64 specification:

1. Address resolution method of Index CACHE instruction

The index CACHE instruction implemented by GS464 takes the

lowest two bits of the virtual address as the selection signal of the route

to the CACHE, instead of intercepting from the middle of the virtual

address as defined in the MIPS64 specification.

2, CACHE28, CACHE29, CACHE30, CACHE31 instructions
containing

The righteous

In processors, CACHE28, CACHE29, CACHE30, and CACHE31
fingersIn processors, the CACHE28, CACHE29, CACHE30, and
CACHE31 instructions (that is, the op[4:2]=0b111 Cache
instruction) have different meanings from the MIPS64 specification.
These instructions in loongson processor are Index Store Data
operations, while those in MIPS64 specification are Fetch and Lock
operations.

These instructions in loongson processor are Index Store Data operations,

while those in MIPS64 specification are Fetch and Lock operations.

The valid Cache operation types in the GS464 processor core are listed
below:

Op [4:0] function description

b10000 Invalid i-cache row based on index

b101000 Write the i-cache line Tag according to
the index

b11100 writes i-cache line Data

 b00001 according to the index to read d-cache
line Tag

 b01001 according to the index to read d-cache
line Tag

b10001 according to the index to read d-cache
line Tag

b10101 according to the indexD-cache line
b11001 reads d-cache line Data

b11101 reads d-cache line Data b00011 reads s-
cache line

 龙芯 3A1000 处理器用户手册下册

29

 b00111 reads s-cache line Tag

 b01011 reads s-cache line Tag

 b10011 reads s-cache line

b11011 reads s-cache line Data according to the
index

b11111 writes the s-cache row Data according to
the index

2.2.2 Disable the instruction

GS464 processor core disables the following instructions, as shown in table 2-14:

30

Table 2-14 disable instructions

Instruction
mnemonics

Command
function

description

ISA
compatibility

level

DI Disabling interrupts MIPS32 R2

EI Allow the interrupt MIPS32 R2

2.3 Custom extension instructions

The custom extension instructions implemented by loongson GS464 processor are divided into the following
categories according to their functions:

 To fetch instruction

 Multiplication and division instruction

 X86 binary acceleration instruction

 64 bit multimedia instructions

 Miscellaneous instruction

2.3.1 Custom extended access instructions

Table 2-15 custom extended access instructions

Instruction
mnemonics

Command
function

description

GSLE The exception is if less than or equal to set the address wrong

GSGT The exception is if the address is not correct

GSLBLE Fetch bytes with an out - of - bounds check

GSLBGT Fetch byte with down - bounds check

GSLHLE Bring the cross - check half word

GSLHGT Take down the half word for cross - check

GSLWLE Bring the word for crossing the line

GSLWGT Take down the character for cross - check

GSLDLE Bring the double word for crossing the line

GSLDGT Take down the cross - border check take double word

GSLQ The dual target register takes a fixed point quadword

GSLBX Fetch byte with offset

GSLHX Take half a word with offset

Instruction Command

31

mnemonics function
description

GSLWX An offset fetch

GSLDX Take two words with offset

GSSBLE Memory bytes with overbounds checking

GSSBGT Memory byte with down - bounds check

GSSHLE Bring the half word with you for cross - check

GSSHGT Save half a word with down crossing check

GSSWLE Bring your checkbox with you

GSSWGT Save the word with down - crossing check

GSSDLE Bring double characters for cross - check

GSSDGT Save double characters with down - crossing check

GSSQ The dual source register stores the fixed point four words

GSSBX Memory bytes with offset

GSSHX Half word with offset

GSSWX Memory with offset

GSSDX Save two words with offset

2.3.2 Custom extended multiplication and division operation instruction

Table 2-16 custom extended multiplication and division instructions

Instruction
mnemonics

Command
function

description

GSMULT With a signed word multiplication, the result is written to the universal
register

GSDMULT Signed double word multiplication, the result is written to the universal
register

GSMULTU Unsigned word multiplication, the result is written to the universal
register

GSDMULTU Unsigned double word multiplication, the result is written to the
universal register

GSDIV Signed word division, quotient write universal register

GSDDIV Signed double word division, quotient write universal register

GSDIVU Unsigned word division, quotient write universal register

GSDDIVU Unsigned double word division, quotient write universal register

GSMOD The remainder of the signed word is written to the universal register

GSDMOD The remainder is written to the universal register

GSMODU The remainder of the unsigned word is written to the universal register

32

Instruction
mnemonics

Command
function

description

GSDMODU The remainder is written to the universal register

2.3.3 Custom extensions to X86 binary translation acceleration instructions

Table 2-17 custom extensions X86 binary translation acceleration instructions

Instruction
mnemonics

Command
function

description

X86AND Only the logical bits of EFLAG are set in x86 mode

X86OR Only the logical bits of EFLAG or are set in x86 mode

X86XOR Only logical bits of EFLAG are set in x86 mode

X86DADD In x86 mode, only double-word adders of EFLAG are set

X86ADD Only word adders of EFLAG are set in x86 mode

X86DADDU No exception for double-word addition with EFLAG only set in x86
mode

X86ADDU No exception word addition that sets EFLAG in x86 mode only

X86DSUB Sets only the double decrement of EFLAG in x86 mode

X86SUB Only EFLAG subtractions are set in x86 mode

X86DSUBU No exception for double-word decrement with EFLAG set only in x86
mode

X86SUBU No exception word subtractions that only set EFLAG in x86 mode

X86INC The double word with EFLAG in x86 mode is self-increment 1

X86DEC Only two words that set EFLAG in x86 mode are self-decrement 1

X86DSLL Only double-word moves left of EFLAG in x86 mode

X86SLL Only words that set EFLAG in x86 mode move left

X86DSLL32 In x86 mode, only the shift amount of EFLAG plus 32 is set to the left
of the doubleword logic

X86DSLLV In x86 mode, only the two-word variable shift of EFLAG moves to the
left

X86SLLV The variable shift amount of a word that only sets EFLAG in x86 mode
moves to the left

X86DSRL Double-word logic that only sets EFLAG in x86 mode moves to the
right

X86SRL Word logic that sets EFLAG in x86 mode moves only to the right

X86DSRL32 In x86 mode, only the shift amount of EFLAG plus 32 double word
logic moves to the right

X86DSRLV In x86 mode, only the two-word variable shift quantity logic of
EFLAG moves to the right

X86SRLV Logical right shift of the word variable shift that only sets EFLAG in
x86 mode

X86DSRA Double-word arithmetic shift with EFLAG only set in x86 mode

33

X86SRA Arithmetic righting of EFLAG words in x86 mode only

Instruction
mnemonics

Command
function

description

X86DSRA32 In x86 mode, only the shift amount of EFLAG plus 32's logical
arithmetic shift to the right is set

X86DSRAV Set EFLAG in x86 mode only for binary variable shift arithmetic shift
to the right

X86SRAV In x86 mode, only EFLAG's word variable shift quantity is set
arithmetic right shift

X86DROTR Double-word loops that only set EFLAG in x86 mode are shifted to the
right

X86ROTR In x86 mode, only EFLAG word loops are set to shift to the right

X86DROTR32 In x86 mode, only the shift amount of EFLAG plus 32 is set to the
right of the doubleword logic loop

X86DROTRV In x86 mode, only the variable shift of EFLAG is set to the right of the
double-word loop

X86ROTRV Word cycles that only set EFLAG's variable shift amount to the right in
x86 mode

X86MFFLAG EFLAG flag bit values are extracted in x86 mode

X86MTFLAG Modify the value of the EFLAG flag bit in x86 mode

X86J Jumps on EFLAG values in x86 mode

X86LOOP Loops in x86 mode based on EFLAG values

SETTM X86 floating point stack mode Settings

CLRTM X86 floating point stack mode clear

INCTOP X86 floating point stack top pointer plus 1

DECTOP X86 floating point stack top pointer minus 1

MTTOP Writes the x86 floating point stack top pointer

MFTOP Read the x86 floating point stack top pointer

SETTAG Determine the collocation register

2.3.4 Custom extensions for 64-bit multimedia acceleration instructions

Table 2-18 custom extensions for 64-bit multimedia acceleration instructions

Instruction
mnemonics

Command
function

description

PADDSH Four 16-bit signed integers plus, signed saturation

PADDUSH Four 16-bit unsigned integers plus, unsigned saturation

PADDH Four 16-digit Numbers plus

PADDW Two 32-digit Numbers plus

PADDSB Eight 8-bit signed integers plus, signed saturation

34

PADDUSB Eight 8-bit unsigned integers plus, unsigned saturation

PADDB Eight eight-digit Numbers plus

Instruction
mnemonics

Command
function

description

PADDD 64 digits add

PSUBSH Four 16-bit signed integers minus, signed saturation

PSUBUSH Four 16-bit unsigned integers minus, unsigned saturation

PSUBH Four 16-digit Numbers minus

PSUBW Two 32-digit Numbers minus

PSUBSB Eight 8-bit signed integers minus, signed saturation

PSUBUSB Eight 8-bit unsigned integers minus, unsigned saturation

PSUBB Eight eight-digit subtractions

PSUBD 64 digits

PSHUFH Mix and wash four 16-digit Numbers

PACKSSWH A 32-bit signed integer is converted to a 16-bit signed saturation

PACKSSHB A 16-bit signed integer is converted to an 8-bit signed saturation

PACKUSHB 16 - bit signed integer converted to 8 - bit, unsigned saturation

PANDN Fs and ft are bitwise

PUNPCKLHW Unpacking is 16 digits low

PUNPCKHHW Unpacking is 16 digits high

PUNPCKLBH Unpacking is low by 8 digits

PUNPCKHBH Unpacking high by 8 digits

PINSRH_0 Ft low 16 bits insert into fs low 0 16 bits

PINSRH_1 Ft low 16 bits insert into fs low 1 16 bits

PINSRH_2 Ft low 16 bits insert into fs low 2 16 bits

PINSRH_3 Ft low 16 bits inserted into fs low 3 16 bits

PAVGH Four 16-bit unsigned integers are averaged

PAVGB Eight 8-bit unsigned integers are averaged

PMAXSH Take the larger value of four 16-bit signed integers

PMINSH Take the smaller value of four 16-bit signed integers

PMAXUB Take the larger value of eight 8-bit unsigned integers

PMINUB Eight 8-bit unsigned integers take smaller values

PCMPEQW Two 32 digits are equal to each other

PCMPGTW Two 32-bit signed integers are greater than the comparison

PCMPEQH Four 16 - digit comparisons are equal

35

PCMPGTH Four 16-bit signed integers are greater than the comparison

PCMPEQB Eight 8-digit Numbers are equally compared

Instruction
mnemonics

Command
function

description

PCMPGTB Eight 8-bit signed integers are greater than comparisons

PSLLW Two 32-bit logic moves left

PSLLH Four 16-digit logic moves left

PMULLH Multiply four 16-bit signed integers and take the result to be 16 bits
lower

PMULHH Multiply four 16-bit signed integers and take the height of the result to
be 16 bits

PMULUW Multiply the lower 32-bit unsigned integers to store the 64-bit result

PMULHUH Multiply four 16-bit unsigned integers to get the 16-bit height of the
result

PSRLW Two 32-bit logical moves to the right

PSRLH Four 16-digit logical moves to the right

PSRAW Two 32-digit arithmetic moves to the right

PSRAH Four 16-digit arithmetic shifts to the right

PUNPCKLWD The lower 32 digits are combined into 64 digits

PUNPCKHWD The high 32 digits are combined into 64 digits

PASUBUB Subtract eight 8-bit unsigned integers and take the absolute value

PEXTRH Fs some 16 bit copy to fd low 16 bit, fd high complement 0

PMADDHW Four 16-bit signed Numbers are multiplied and the lower and higher
levels are added

BIADD Multibyte accumulation

PMOVMSKB Conditional byte shift

GSXOR Fs and ft logical bit or

GSNOR Fs and ft logical bit or non

GSAND Fs and ft logical bit and

GSADDU Fs and ft fixed point unsigned word addition

GSOR Fs and ft fixed point logical bit or

GSADD Fs and ft fixed point character addition

GSDADD Fs and ft fixed point double word addition

GSSEQU Fs and ft are equal in number of fixed points

GSSEQ Fs and ft are equal in number of fixed points

GSSUBU Fs and ft fixed point unsigned word subtraction

GSSUB Fs and ft fixed-point subtraction

GSDSUB Fs and ft fixed point double word subtraction

36

GSSLTU Fs and ft fixed points the number of unsigned fixed points is less than
the comparison

GSSLT Fs and ft fixed point number is less than comparison

GSSLL Fs and ft fixed point logic left - shift words

Instruction
mnemonics

Command
function

description

GSDSLL Fs and ft fixed point logic left shift double word

GSSRL Fs and ft fixed point logic right - shift the word

GSDSRL Fs and ft fixed point logic right shift doublet

GSSRA Fs and ft fixed point arithmetic right shift word

GSDSRA Fs and ft fixed point arithmetic right shift doublet

GSSLEU Fs and ft fixed points the number of unsigned fixed points is less than
or equal to comparison

GSSLE Fs and ft fixed point number is less than or equal to comparison

2.3.5 Custom extension miscellaneous directive

Table 2-19 custom extension miscellaneous instructions

Instruction
mnemonics

Command
function

description

CAMPV Query the lookup table to return the contents of the hit item

CAMPI Query the lookup table to return the index of the hit item

CAMWI Write the lookup table to specify the entry

RAMRI Read the contents of the specified item in the lookup table

3 CP0 control register

This chapter describes the operation of Coprocessor 0 (CP0 for short), mainly including

the register definition of CP0 and the CP0 instruction implemented by loongson 3 processor.

The CP0 register is used to control state changes in the processor and report the current state

of the processor. These registers are read by the MFC0/DMFC0 instruction or written by the

MTC0/ DMTC0 instruction. The CP0 register is shown in table 3-1.

The CP0 instruction can be used when the processor is running in core mode or when bit

28 (CU0) in the Status register is set.Otherwise, executing the CP0 instruction will result in a

"coprocessor unavailable exception."

37

Table 3-1 register CP0

The
register

no.

Register name desc
ribe

Total
no.

The
child

,

0 0 The Index A writable register used to specify TLB table entries
that need to be read/written

1 0 The Random Pseudorandom counter for TLB substitution

2

0

EntryLo0

The contents of the lower half of the TLB table entry
corresponding to the even virtual page (mainly

Physical page number)

3

0

EntryLo1

The contents of the lower half of the TLB table entry

corresponding to the odd virtual page (mainly the

physical page number)

4 0 The Context Virtual page transformation table (PTE) pointing to the
kernel in 32-bit addressing mode

5 0 Page Mask Sets the mask value for the TLB page size

5 1 Page Grain Whether the flag supports large page addresses

6

0

Wired

Number of fixed - wired TLB table entries (low - end

TLB table entries that are not used for random

substitution)

7 0 Hwrena Hardware register enablement

8 0 BadVaddr Incorrect virtual address

9 0 The Count counter

10 0 EntryHi The high half of a TLB table entry (dummy page
number and ASID)

11 0 The Compare Counter comparison

12 0 The Status Processor status register

12 1 IntCtl Extended interrupt control register

12 2 SRSCtl The shadow register group controls the register

13 0 Cause The reason for the latest exception

14 0 The EPC Exception program counter

15 0 PRid Processor revision version id

15 1 EBase Exception vector base address

16 1 Config1 Configure register 1

16 2 Config2 Configure register 2

16 3 Config3 Configure register 3

38

31 30 6 5 0

1 25 6

17 0 LLAddr Link read memory address

18

reserve

19

reserve

20 0 Xcontext Virtual page transformation table (PTE) pointing to the
kernel in 64-bit addressing mode

21

reserve

22 0 Diagnose Enable/disable BTB,RAS and empty ITLB tables

23 0 The Debug EJTAG debug register

24 0 DEPC EJTAG debugging exception counters

25 0/1/2/3 PerfCnt Performance counter

26 0 ErrCtl Parity/ECC check control and state

27 0 CacheErr Cache ECC validates control and status

28 0 TagLo The lower half of the CACHE TAG register

28 1 DataLo Used to interact with and diagnose cache data queues

29 0 TagHi The high half of the CACHE TAG register

29 1 DataHi Used to interact with and diagnose cache data queues

30 0 ErrorEPC Error exception program counter

31 0 DESAVE Registers, used to Debug exception handling

3.1 Index register (0,0)
The Index register is a 32-bit read/write register where the last six bits of the value are

used to Index TLB table entries. The highest bit of the register indicates whether the TLB

probe (TLBP) instruction was executed successfully.

The value of the Index register indicates TLB table entries operated by the TLB read

(TLBR) and TLB Index write (TLBWI) instructions. Figure 3-1 shows the format of the Index

register, and table 3-2 describes the meaning of each field of the Index register.

P 0 The Index

Figure 3-1 Index register

Table 3-2 describes the fields of the Index register

P The probe failed. Set 1 when TLB probe instruction (TLBP) failed last time

The Index The index value of a TLB table entry that indicates the operation of a TLB read
instruction and a TLB index write instruction

描述

39

0 Retained. You must press 0 to write and return 0 on read.

3.2 Random register (1,0)
The Random register is a read-only register in which the table entries of the TLB are six

digits lower. The register value is subtracted 1 for each instruction executed.Meanwhile, the

register value floats between an upper bound and a lower bound. The upper and lower bounds

are:

 The lower bound is equal to the number of TLB entries reserved for the operating system (that is, the contents of the Wired
register).

 The upper bound is going to be the total number of terms of TLB minus 1 (64 minus 1 at most).
The Random register indicates a TLB entry that will be operated on by a TLB Random

write instruction. For this purpose, there is no need to read this register.However, the register

is readable to verify that the corresponding operation of the processor is correct.

To simplify testing, the Random register is set to an upper bound when the system is

restarted.In addition, when the Wired register is written, the register is also set to an upper

bound.

Figure 3-2 shows the format of the Random register, while table 3-3 describes the meaning

of the fields of the Random register.

316 50

0 The Random

26 6

Figure 3-2 Random

register table 3-3 Random

register fields

3.3 EntryLo0 (2,0) and EntryLo1 (3,0) registers
The EntryLo register consists of two registers of the same format:

 EntryLo0 is used for even virtual pages

 EntryLo1 is used for odd virtual pages
The EntryLo0 and EntryLo1 registers are both readable/write registers. When performing

TLB read and write operations, they include TLB, respectively

Physical page number (PFN) of the odd and even pages in the item.Figure 3-3 shows the

The domain describe

The Random Random TLB index values

0 Retained. You must press 0 to write and return 0 on read.

40

format of these registers.

41

63 23 22 4 3 0

41 19 4

63 42 41 65 7 3 2 1 0

 0 PFN C D V G

 72 36 3 1 1 1

Figure 3-3 EntryLo0 and EntryLo1 registers

The PFN fields of the EntryLo0 and EntryLo1 registers are 36 bits higher than the 48-bit physical address (47:12).

Table 3-4 EntryLo register fields

The domain desc
ribe

PFN Page number, which is the high value of the physical address.

C The Cache consistency property of the TLB page.

D Dirty bits. If the bit is set, the page is marked as dirty, that is, writable. This bit is

actually used in software as write protection against data being changed.

V Significant bit. When this bit is set, the TLB table entry is valid, otherwise a TLBL or

TLBS exception.

G The global level. When the G bits in EntryLo0 and EntryLo1 are set to 1, the processor will be in
TLB

Ignore the ASID when searching.

0 Retained. You must press 0 to write and return 0 on read.

There is only one global bit in each TLB table entry, which is written based on the values

EntryLo0[0] and EntryLo1[0] in a TLB write operation.

3.4 The Context (4, 0)
The Context register is a read/write register that contains a pointer to an item in the page

table. The page table is an operating system data structure that stores the translation of virtual

addresses to physical addresses.

When a TLB exception occurs, the CPU loads the TLB from the page table based on the

failed conversion.In general, the operating system USES the Context register to address the

mapping of the current page in the page table. The Context register copies some of the

information in the BadVAddr register, but the information is arranged in a form that the

software TLB exception handler can handle.

Figure 3-4 shows the format of the Context register;Table 3-5 describes the context register fields.

P7EBase BadVPN2 0

Figure 3-4 Context

The domain desc

ribe

42

31 25 24 13 12 0

7 12 13

register table 3-5 Context

register field

(VPN).

PTEBase This field is the read/write field used by the operating system.The value written to this field
allows the operating system to send the Context

Memory serves as a pointer to the current page table in memory.

0 Retained. You must press 0 to write and return 0 on read.
The 19-bit BadVPN2 field contains 31:13 bits of the virtual address that caused the TLB

exception; Bit 12 is excluded because a single TLB entry maps to a parity page pair.For a page

size of 4K bytes, this format can directly address page tables whose PTE table entries are 8

bytes long and organized against each other.For pages of other sizes and ptes, moving and

masking this value can produce the appropriate address.

3.5 PageMask register (5,0)
The PageMask register is a read-write register used during TLB read-write; It contains a

comparison mask that allows you to set different page sizes for each TLB table entry, as shown

in table 3-6.The format of this register is shown in figure 3-5.

TLB read and write operations use this register as a source or destination;When doing

virtual and real address translation, the corresponding bit in the TLB corresponding to the

PageMask register indicates which bits in the virtual address bit 24:13 are used for

comparison.TLB operations are undefined when the values of the MASK field are not the

values in table 3-6.The 0 field is reserved and must be written to and returned to 0 on read.

0 Mask 0

Figure 3-5. PageMask register

Table 3-6 Mask values for different page sizes

Page size

position

24 23 22 21 20 19 18 17 16 15 14 13

4 kbytes 0 0 0 0 0 0 0 0 0 0 0 0

16 Kbytes 0 0 0 0 0 0 0 0 0 0 1 1

64 Kbytes 0 0 0 0 0 0 0 0 1 1 1 1

256 Kbytes 0 0 0 0 0 0 1 1 1 1 1 1

1 Mbytes 0 0 0 0 1 1 1 1 1 1 1 1

4 Mbytes 0 0 1 1 1 1 1 1 1 1 1 1

16 m bytes 1 1 1 1 1 1 1 1 1 1 1 1

43

3.6 PageGrain register (5,1)
The PageGrain register is a read-write register, and the godson 3 only defines the 29th bit

of this register: ELPA (Enable Large Physical Adress), with the remaining bits left at 0.

When ELPA=1, loongson 3 supports 48-bit physical address;When ELPA=0, loongson 3

only supports 40 physical addresses.Whether or not the ELPA bit can be written depends on

the LPA field of the Config3 register.When the LPA bit of Config3 is 0, ELPA of PageGrain

The bit is set to 0.The format of the register is shown in figure 3-6, and the register fields

are shown in table 3-7.

44

31 30 29 28

2 1 29

 ELPA 0

Figure 3-6 PageGrain

register table 3-7 PageGrain

register field

The domain desc
ribe

ELPA Whether the field is set indicates whether large physical addresses are supported

0 Retained. You must press 0 to write and return 0 on read.

3.7 Wired register (6,0)
The Wired register is a readable/written register whose value specifies the boundaries

between fixed and random table items in TLB, as shown in figure 3-7. Wired table entries

are fixed, non-replaceable table entries whose contents are not modified by TLB write

operations. The contents of random table entries can be modified.

Figure 3-7. Wired register boundaries

The Wired register is set to 0 when the system is reset. When writing to this register, the

value of the Random register is set to the upper limit (see the Random register above).

Figure 3-8 shows the format of the Wired register;Table 3-8 describes the domain of this

register.

316

50

随机值 0

固定项范围

Wired 寄存器

随机项范围

63
TLB

45

0 Wired

26 6

Figure 3-8 Wired

register table 3-8 Wired

register field

3.8 HWREna register (7, 0)
HWREna is a read/write registers, the godson 3 only defines the Mask this register

domain, is used to represent instructions

The source hardware register for the RDHWR. The 0 field is reserved and must be

written to and returned to 0 on read.

The format of the figure 3-9 shows the HWREna register;Table 3-9 describes the

correspondence between the Mask field and the hardware register.

3174

30

0 Mask

28 4

Figure 3-9 HWREna registers

Table 3-9 correspondence between Mask field and hardware register

Hardware
register

position

3 2 1 0

CPUnum 0 0 0 1

SYNCI_Step 0 0 1 0

CC 0 1 0 0

CCRes 1 0 0 0

3.9 BadVAddr register (8,0)
The error virtual address register (BadVAddr) is a read-only register that records the last

virtual address that resulted in a TLB or addressing error exception.The BadVAddr register

will remain unchanged unless a software reset occurs, with the exception of an NMI or Cache

error.Otherwise the register is undefined.

Figure 3-10 shows the format of the error virtual address register.

The domain describe

Wired TLB fixes table item boundaries

0 Retained. You must press 0 to write and return 0 on read.

46

6370

BadVAddr

64

Figure 3-10 BadVAddr register

47

63 62 61 48 47 13 12 8 7 0

2 14 35 5

3.10 The Count register (9,0) and the Compare register (11,0)
The Count register and the Compare register are both 32-bit read-write registers.

The Count register works as a real-time timer, incrementing by 1 every two clock cycles.

The Compare register is used to generate an interrupt at a particular moment, which is

written to a value and constantly compared to the value in the Count register. Once these two

values are equal, an interrupt request is generated. The TI and IP[7] in Cause register are set.

The TI bit of Cause register is reset when the Compare register is written again.

Figure 3-11 shows the format of the Count register.Figure 3-12 shows the format of the

Compare register.

317

0

The Count

32

Figure 3-11 Count register

31

C7mpare

32

Figure 3-12 the Compare register

3.11 EntryHi register (10,0)
The EntryHi register is used to store the high level of TLB table entries when TLB reads

and writes.

The EntryHi register can be Indexed by TLB Probe, TLB Write Random, TLB Write

Indexed, and TLB Read Indexed

Instruction access.

Figure 3-13 shows the format of the EntryHi register.Table 3-10 represents the fields of

the EntryHi register.

R 0 VPN2 0 ASID

Figure 3-13 EntryHi register

Table 3-10 EntryHi register domains

48

31 28 27 26 25 24 23 22 21 20 19

2 1 0

4 1 1 2 1 1 1 1 1 2 8 1 1 1 1 1 1

The domain describe

VPN2 Empty page number divided by 2 (maps to double pages);The high value of the virtual
address.

ASID The address space identifies the domain. An 8-bit field;Used to share TLB

between multiple processes;Each process has a different mapping to the other

processes for the same virtual page number.

R Area. (00-> user, 01-> superuser, 11-> core) used to match vAddr63...62

0 Retained. You must press 0 to write and return 0 on read.

The VPN2 domain contains 61:13 bits of the 64-bit virtual address.

When a TLB Refill, TLB Invalid, or TLB Modified exception occurs, the virtual page

number (VPN2) and ASID in the virtual address that does not match the TLB table entry are

loaded into the EntryHi register.

3.12 Status register (12,0)
The Status register (SR) is a read-write register that includes operation mode, interrupt

permission, and processor Status diagnosis. The following list describes some of the more

important Status register fields;Figure 3-14 shows the format of the entire register, including

a description of the domain.Among the important fields are:

The 8-bit interrupt mask (IM) domain controls the enabling of eight interrupt

conditions.Interrupts must be enabled before they can be triggered, and the corresponding bits

in the interrupt masking field of the Status register and the interrupt pending domain of the

Cause register should be set.For more information, refer to the interrupt pending (IP) domain

of the Cause register.

The 4-bit coprocessor availability (CU) domain controls the availability of four possible

coprocessors.No matter how the CU0 bit is set, CP0 is always available in kernel mode.

Status register format

Figure 3-14 shows the format of the Status register, and table 3-11 describes the Status register field.

CU

(cu3:
cu0)

0 FR 0 PX
.

BEV 0 Th
e
SR

NMI 0 IM7 -
IM0

KX SX UX KSU ERL EXL IE

Figure 3-14 Status

register table 3-11 Status

register field
The domain desc

ribe

CU Controls the availability of four coprocessor units.No matter how the CU0 bit is set,

CP0 is always available in kernel mode.

1 - available

0 - is unavailable

49

FR ShiNengFuJiaDeFuDianJiC

unQi s 0 -16 GeJiCunQi

1 -32 GeJiCunQi

PX. Enable 64-bit operations in user mode (64-bit operations in the remaining modes do not need
to be enabled)

1 - can make

0 - not enabled (the UX bit needs to be determined if 64-bit operations are available in user
mode at this point)

BEV Control the entry address of the exception vector

0 Normal -

1 - start

The SR 1 indicates that a soft reset exception occurred

NMI Whether an NMI exception occurs.Note that the software cannot write this from 0 to 1

IM Interrupt masking: controls the enabling of each external, internal, and software interrupt. If
the interrupt is enabled, it is allowed to trigger while the corresponding bit of the interrupt
pending field of the Cause register is set.
0 to ban
1 - allows the

KSU Mode bits

11 undefined

10 The average user

01 The super user

00 core

KX 1 -- enable 64-bit Kernel segment access; Use the XTLB Refill vector.

0 - cannot access 64-bit Kernel segment; Use the TLB Refill vector

SX 1 -- enable 64 Supervisor visits; Use the XTLB Refill vector.

0 -- cannot access the 64-bit Supervisor segment; Use the TLB Refill vector

UX 1 -- enable 64-bit User segment access; Use the XTLB Refill vector.

0 - cannot access 64-bit User segment; Use the TLB Refill vector

ERL Error level. The processor resets this bit when a reset, software reset, NMI, or Cache error
occurs.

EXL The exception class. The handler is set when an exception is generated that is not caused by a reset, software
reset, or Cache error

The bit.
IE Interrupt enablement.

Status register mode and access Status

The following fields in the Status register are used to set the mode and access the Status:

 Interrupt enablement: an interrupt is enabled when:

50

 And IE = 1

51

31 26 25 10 9 5 4 0

6 16 5 5

 EXL = 0 and

 ERL = 0.

If these conditions are encountered, the IM bit Settings allow interrupts.

 Operation mode: the following bit fields need to be set when the processor is in normal user, kernel, and
superuser mode.

 The processor is in normal user mode when KSU = 10, EXL = 0, and ERL = 0.2

 The processor is in superuser mode when KSU = 01, EXL = 0, and ERL = 0.2

 The processor is in kernel mode when KSU = 00, or EXL = 1, or ERL = 1.2

 Kernel address space access: the kernel address space is accessible when the processor is in kernel mode.

 Superuser address space access: when the processor is in kernel or superuser mode, the superuser

address space can be accessed.

 User address space access: the processor can access the user address space in all three modes of operation.

Status register reset

When reset, the value of the Status register is 0x30c000e4.

3.13 IntCtl register (12,1)
The IntCtl register is a read-write 32-bit register. It manages the interruption of expansion

in the Release2 system.Loongson 3 implements vector interrupts.The VS field of IntCtl

register is used to represent the vector space between interrupt vectors. 1 field not writable,

read 1; The 0 field is reserved and must be written to and returned to 0 on read. Of these,

31:26 represent clock interrupts and Performance Counter interrupts sharing HW5.

Figure 3-15 shows the format of the IntCtl register, and table 3-12 describes the

correspondence between the VS field and the vector space.

1 0 VS
.

0

Figure 3-15 IntCtl register

Table 3-12 corresponding relationship between the encoding of VS field and the vector space

coding Vector space
(hexadecimal)

Vector space (base
10)

0 x00 0
x000

0

0 x01 0
x020

32

0 x02 0
x040

64

0 x04 0
x080

128

52

0 x08 0
x100

256

0 x10 0
x200

512

53

31 30 29 28 27 26 25 724 23

8 7 6 2 1 0

1 1 2 1 1 2 1 7 8 1 5 2

3.14 SRSCtl register (12,2)
The SRSCtl register is a 32-bit read-write register. It controls the group of shadow

registers in the processor.Because loongson 3 has only one set of general purpose registers and

no shadow registers, the shadow of the general purpose register is the general purpose register

itself, and the SRSCtl register in loongson 3 only implements two domains: ESS and PSS.

Figure 3-16 shows the format of the SRSCtl register, and table 3-13 describes the domain of the SRSCtl register.

317

16

1512

11 10

976

50

 0 ESS 0 PSS 0

 16 4 4 6

Figure 3-16 SRSCtl

register table 3-13 SRSCtl

register fields

3.15 Cause register (13,0)
The 32-bit read-write Cause register describes the Cause of a recent exception.

Figure 3-17 shows the format of this register, and table 3-14 describes the field of the

Cause register.A 5-bit ExcCode

One reason is indicated, as shown in table 3-15.

BD TI CE 7 c PCI 0 IV 0 IP7 - IP0 0 Exc Code 0

Figure 3-17 Cause register

Table 3-14 Cause register fields

The domain desc
ribe

BD Indicates whether the last exception adopted is in the branch delay slot.

1 - delay slot

0 - normal

The domain describe

ESS Shadow register group for exception. It can only be 0 in loongson 3

PSS The previous shadow register group. It can only be 0 in loongson 3

0 Retained. You must press 0 to write and return 0 on read.

54

TI Clock interrupt indicator

0- no clock interrupts

1- there is time to interrupt waiting for processing

55

CE The unit number of the coprocessor when an exception occurs that the coprocessor is not

available.
DC Disable counting register

The 0- counting register is available

1- the counting register is disabled

PCI Performance counter interrupt indication

0- no performance counter interrupts

1- there is a performance counter interrupt waiting to be processed

IV Interrupt exception entry

0- use the generic exception vector (0x180)

1- use special interrupt vector (0x200)

IP Indicate the interruption of the wait. This bit will remain unchanged until the interrupt is

removed. IP0~IP1 are soft interrupt bits that can be set and cleared by software.

1- interrupt waiting

0- no interruption

ExcCode Exception code fields (see table 3-15)

0 Retained. You must press 0 to write and return 0 on read.

Table 3-15 ExcCode field of Cause register

Exception
code

Mnemonic desc
ribe

0 Int interrupt

1 The Mod TLB modification is an exception

2 TLBL TLB exception (read or fetch instructions)

3 TLBS TLB exception (storage)

4 AdEL Address error exception (read or fetch instruction)

5 AdES Address error exception (storage)

6 IBE Bus error exception (fetch instruction)

7 DBE Bus error exception (data reference: read or store)

8 Sys System call exception

9 Bp Breakpoint exception

10 RI Exception to reserved instruction

11 The CpU An exception is not available for the coprocessor

12 Ov Arithmetic overflow exception

13 The Tr Trap exceptions

14 - reserve

15 FPE Floating-point exception

16 IS Exception stack

17-18 - reserve

56

19 DIB Debug instruction exception

57

20 DDBS Debug saves data exception

21 DDBL Debug fetch data exception

22 - reserve

23 WATCH WATCH the exception

24 and 25 - reserve

26 DBP Debug breakpoint exception

27 DINT Debug Debug exception

28 DSS Debug single step exception

29 - reserve

30 CACHERROR Cache fault exception

31 - reserve

3.16 Exception Program Counter register (14,0)
The Exception Program Counter (EPC for short) is a read/write register that contains the

address of the continuation processing after the Exception processing is completed.

For the synchronization exception, the contents of the EPC register are one of the following:

 Instruction virtual address, which is the direct cause of the exception, or

 The virtual address of a previous branch or jump instruction (when the instruction is in the branch delay

slot, the instruction delay bit is set in the Cause register).

When the EXL bit in the Status register is set to 1, the processor does not write the EPC

register.Figure 3-18 shows the format of the EPC register.

6377

0

The
EPC
64

Figure 3-18 EPC register

3.17 Processor Revision Identifier (PRID) register (15,0)
The PRID register is a read-only register of 32 that contains information about the

calibration processor and the implementation and revision versions of the CP0 version. Figure

3-19 shows the format of the register;Table 3-16 describes the domain of this register.

58

317

16

158

70

0 Imp Rev

16 8 8

Figure 3-19 Processor Revision Identifier register

Table 3-16 PRId register fields

The domain describe

IMP Implementation version number

REV Revision number

0 Retained. You must press 0 to write and return 0 on read.

The low (7:0 bit) of the PRID register can be used as the revision number, while the high

(15:8) bit can be used as the implementation number. Loongson 3 implementation version

number 0x63, revision version number 0x03.

The format of the version number is Y.X, where Y (7:4 bit) is the main version number

and X (3:0 bit) is the small version number.The version number can distinguish the version of

some processors, but there is no guarantee that any changes to the processor will be reflected

in the PRID register,

In other words, there is no guarantee that changes to the version number must reflect

changes to the processor. For this reason, the value of the register is not given, and the software

cannot rely on the version number in the PRID register to identify the processor.

3.18 EBase register (15,1)
The EBase register is a read-write register that contains the exception vector base address

and a read-only CPU number. When the BEV of the state register is equal to 0, the exception

vector base address in the EBase register is used.

Figure 3-20 shows the format of the EBase register, and table 3-17 describes the field of

the EBase register.

31 30 29 7 12 1110 9 0

1 0 Exc Eption Base 0 CPUNum

1 18 2 10

Figure 3-20 Ebase register

Table 3-17 Ebase register fields

59

The domain describe

1 Can not write only read, read 1

0 Retained. You must press 0 to write and return 0 on read.

The Exception Base Jointly specify the base address of the exception vector with 31 bits and 30 bits

CPUNum In multicore systems, used to specify the processor number

3.19 Config register (16,0)
The Config register provides various configuration options for the loongson 3 processor.

These options are listed in table 3-18.

Some of the configuration options defined by bit 31:3 in the Config register are set by the

hardware at reset and are included in the Config register as read-only status bits for software

access.The other configuration options (bit 2:0 in the Config register) are readable/written and

controlled by the software.These fields are not defined at reset time.

The configuration of the Config register is limited. The Config register should be

initialized by the software before the Cache is used, and the Cache should be reinitialized after

any changes are made.

Figure 3-21 shows the format of the Config register.Table 3-18 describes the fields of the

Config register. The initial value of the Config register is 0x00030932.

71 371615 1413 1210 97 64 3 20

1154331113

Figure 3-21 Config register

table 3-18 Config register

field

The domain describe

0 Retained. You must press 0 to write and return 0 on read.

M Whether the config1 register exists, setting 1 means it exists.

BE Specify the end type

1 -- large tail

0 - small tail

The AT Specify the architectural type

0 - MIPS32

1 -- MIPS64, which can only access the 32-bit address segment

2 -- MIPS64, which can access all address segments

3 - reserve

M 0 BE The
AT

AR MT 0 V K0

60

31 30 725 24 2221 1918 1615 1312 109 7 6 5 4 3 2

1 6 3 3 3 3 3 3 1 1 1 1 1 1 1

AR Specify the version

0 - Release 1

1 - Release 2

2-7 - remain

MT Specifies the memory management unit type

0 - no mapping

1 - standard TLB

2-7 - remain

VI Indicates whether there is a

virtual instruction Cache 0 - the

instruction Cache is not virtual

1 - the instruction Cache is virtual
K0 Kseg0 consistency algorithm (Cache consistency algorithm)

2 - Uncached

3 - Cacheable

Remaining - reserved

3.20 Config1 register (16,1)
The Config1 register specifies the cache configuration of loongson 3 processor.

The Config1 register is used as an additional part of the Config register. All the contents are read-

only and are automatically set when reset. Figure 3-22 shows the format of the Config1 register.

Table 3-19 describes the field for the Config1 register. The initial value of the Config1 register is 0xfee37193.

M MMU Size 1 IS IL IA DS DL DA C2 MD Th
e
PC

WR 7 a EP F

Figure 3-22: Config1 register

Table 3-19 Config1 register field

Domain description

M Whether the config2 register exists, setting 1 means it does.

MMU Size 1 The number of TLB table entries minus 1

IS

Icache number of groups per path

 codin
g

meani
ng

0 64

1 128

2 756

3 712

61

4 1024

5 2048

6 4096

7 reserv
e

IL

Icache size per group

 codin
g

meaning

0 No Icache

1 4 bytes

 2 8 bytes

3 16 bytes

4 32 bytes

5 64 bytes

6 128 bytes

7 reserve

IA

Icache connection method

 codin
g

meaning

0 Directly
connected

1 2 way
connected

2 3 way
connected

3 4-way
linked

4 No.5
associative

5 No.6
associative

6 7 road
linked

7 8 road
linked

DS

Dcache number of groups per path

 Ed meani
ng

 64

1 128

2 256

3 512

4 1024

5 2048

6 4096

7 reserv
e

Dcache size per group

 codin
g

meaning

0 No Dcache

1 4 bytes

62

DL 2 8 bytes

3 16 bytes

4 32 bytes

5 647 bytes

6 128 bytes

7 reserve

DA

Dcache connection mode

 codin
g

meaning

0 Directly
connected

1 2 way
connected

2 3 way
connected

 3 4-way
linked

4 No.5
associative

5 No.6
associative

6 7 road
linked

7 8 road
linked

C2

Coprocessor no. 2 is implemented

0 - unrealized

1 - to achieve

MD

Whether or not MDMX ASE is implemented

0 - unrealized

1 - to achieve

The PC

Whether the performance count register is implemented

0 - unrealized

1 - to achieve

WR

Whether the Watch register is implemented

0 - unrealized

1 - to achieve

The CA

Whether or not MIPS16e is implemented

0 - unrealized

1 - to achieve

EP

Whether EJTAG is implemented

0 - unrealized

1 - to achieve

FP

Whether FPU is implemented

0 - unrealized

1 - to achieve

63

31 30 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

1 3 4 4 4 4 4 4 4

3.21 Config 2 register (16,2)
The Config2 register specifies the configuration of the secondary cache in loongson 3 processor.

The Config2 register ACTS as, all the contents are read-only, and is automatically set when reset.

Figure 3-23 shows the format of the Config1 register.Table 3-20 describes the field for the Config2

register. The initial value of the Config2 register is 0x80001643.

M TU TS TL TA SU SS SL 7 a

64

Figure 3-23. Config2 register

Table 3-20 Config2 register fields

Domain description

M If there is a config3 register, setting 1 means there is one.

TU Level 3 cache control or status bit

TS

The number of groups per path in a three-level cache

 codin
g

meani
ng

0 6

1 128

2 256

3 512

4 1024

 2048

6 4096

7 8192

8-15 reserv
e

TL

Three levels of cache size per group

 codin
g

meaning

0 No Icache

1 4 bytes

2 8 bytes

3 16 bytes

4 32 bytes

5 64 bytes

6 128 bytes

7 756 bytes

8-15 reserve

TA

Three levels of cache connection

 codin
g

meaning

0 Directly
connected

1 2 way
connected

2 3 way
connected

3 4-way
linked

4 No.5
associative

5 No.6
associative

6 7 road
linked

7 8 road
linked

65

7 to
15

reserve

SU The second level cache control or status bit

SS The number of groups per path in the secondary cache

 codin
g

meani
ng

0 64

1 128

2 756

3 512

4 1024

5 2048

6 4096

7 8192

8-15 reserv
e

SL Level 2 cache size per group

 codin
g

meaning

0 No Icache

1 4 bytes

2 8 bytes

3 16 bytes

4 32 bytes

5 64 bytes

6 128 bytes

7 256 7 ytes

8-15 reserve

The SA Level 2 cache connection mode

 codin
g

meaning

0 Directly
connected

1 2 way
connected

2 3 way
connected

3 4-way
linked

4 No.5
associative

5 No.6
associative

6 7 road
phase

 8 road
linked

8-15 reserve

3.22 Config 3 register (16,3)
The Config3 register marks whether some functions are implemented or not, and

66

everything is read-only, which is automatically set when reset.

Figure 3-24 shows the format of the Config1 register.Table 3-21 describes the field for

the Config1 register. The initial value of the Config1 register is 0x000000a0.

67

31

30

71

10

98

7

6

5

4

3

2

1

0

M 0 DSPP 0 LPA VEIC he SP 0 MT SM TL

1 20 1 1 1 1 1 1 1 1 1

Figure 3-24. Config3 register

Table 3-21: Config3 register field

The domain describe

M reserve

0 Retained. You must press 0 to write and return 0 on read.

DSPP

Whether or not MIPS DSPASE is implemented

0 - unrealized

1 - to achieve

LPA

Whether the large physical address is implemented

0 - unrealized

1 - to achieve

VEIC

Whether the external interrupt controller is implemented

0 - unrealized

1 - to achieve

he

Whether the vector interrupt is implemented

0 - unrealized

1 - to achieve

SP

Small page support is implemented or not

0 - unrealized

1 - to achieve

MT

Whether MIPS MTASE is implemented

0 - unrealized

1 - to achieve

SM

Whether SmartMIPS ASE is implemented

0 - unrealized

1 - to achieve

TL

Trace Logic is implemented

0 - unrealized

1 - to achieve

68

3.23 Load Linked Address (LLAddr) register (17,0)
 The LLAddr register is a 64-bit read-only register. The LLAddr register is used to store

the address page number PFN of the recently occurred load-linked instruction, and when the

exception returns (when the eret instruction occurs), the LLAddr register is cleared. The format

of this register in loongson 3 is shown in figure 3-25.

637484712110

163612

Figure 3-25 LLAddr register

3.24 XContext register (20,0)
The read-write XContext register contains a pointer to a table entry in the operating

system page table.When a TLB exception occurs, the operating system loads the TLB from the

page table based on the failed conversion.

The XContext register is used for XTLB rescaling processing, handling the TLB TAB

loading of the 64-bit address space, and is used by the operating system only. The operating

system sets the PTEBase field in the register as needed.

Figure 3-26 shows the format of the XContext register;Table 3-22 describes the domain of the XContext register.

6341

4039

384

37

0

 PTEBase R BadVPN 0

 23 2 35 4

Figure 3-26 XContext register
The 35-bit BadVPN2 domain contains 47:13 bits of the virtual address that caused the

TLB exception, and since a single TLB table entry maps to a parity page pair, bit 12 is not

included. When the page size is 4K bytes, this format can directly address page tables whose

PTE table entries are 8 bytes long and organized by pair.For other pages and PTE sizes, the

correct address can be obtained by shifting and masking.

Table 3-22 XContext register fields

The domain describe

BadVPN2 When a TLB exception occurs, the hardware will write to this field, which
contains the virtual page number division for the most recent invalid virtual
address

2.

0 PFN 0

69

R The field contains 63:62 bits of the virtual address.

00 super user

01 common user

70

63 8 7 6 5 4 3 2 1 0

56 1 1 1 1 1 1 1 1

 11 内核

0 Retained. You must press 0 to write and return 0 on read.

PTEBase A readable/write field that allows the operating system to use the XContext
register as a pointer to memory

Pointer to the current page table.

3.25 Diagnostic register (22,0)
Loongson processor special 64 bit register, mainly used to control some internal queues and special

operations of the processor.The format of the Diagnostic register is shown in figure 3-27, and the field of

the Diagnostic register is described in table 3-23.

0 W - CAC W - ISS S - ISS S - FET 0 ITLB BTB The
RAS

Figure 3-27 Diagnostic register

Table 3-23 Diagnostic register fields

The domain describe

0 Retained.You must press 0 to write and return 0 on read.

W - CAC Unrestrict the wait-cache operation

W - ISS Remove the restriction on the wait-issue operation

S - ISS Remove restrictions on store-issue operations

S - FET Remove restrictions on store-fetch operations

ITLB Clear ITLB when writing 1

BTB Empty BTB when writing 1

The RAS RAS is not allowed when writing 1.

3.26 Debug register (23,0)
The Debug register is a 32-bit read-write register. The Debug register contains the

reason for the Debug exception that occurred recently or in Debug mode, and it also controls

single-step interrupts. This register indicates the debug resource and other internal states.Only

the LSNM and SSt fields can be written, and only the DM bit and EJTAGver fields can be read

when the debug register is read in non-debug mode.Loongson 3 does not implement the power-

saving mode for debug exceptions.When reset, the initial value of the Debug register is:

0x02018000.

Figure 3-28 shows the format of the Debug register, and table 3-24 shows the field of the

Debug register.

56

31

3

29

28

27

26

25

24

18

1715

1410

9

8

7

6

5

4

3

2

1

0

 DBD DM NoDCR LSNM 0 Count7M 0 EJTAGver DExcCode No7St SSt 0 DINT DIB DDBS DDBL DBp DSS

 1 1 1 1 2 1 7 3 5 1 1 2 1 1 1 1 1

Figure 3-28 Debug register

Table 3-24 fields of the Debug register

The domain describe

0 Retained. You must press 0 to write and return 0 on read.

DBD Indicates whether the debug exception occurred in the delay slot.

0 - not

1 - is

DM Indicates whether the processor is in Debug mode

0 -- non-debug Mode

1 -- Debug Mode

NoDCR Indicates whether the dseg segment exists

1 -- doesn't exist

0 - there

LSNM When the dseg segment is present, the available addresses of loads/stores are indicated

0 - dseg section

1 -- system memory

CountDM The working state of the Count register when entering DM

0 - stopped

1 - runnig

EJTAGver EJTAG version

0 - version 1 and 2.0

1 -- version 2.5

2 -- version 2.6

3 -- version 3.1

4, reserve

DexcCode Indicates the reason for the last exception in Debug mode

NoSSt Indicates whether single-step interrupts are supported

0 - support

1 - do not support

SSt Single-step interrupt enable bit

0 -- not available

57

 1 - can make

DINT Setting indicates that a Debug interrupt exception occurred

Automatically clears when you enter Debug mode

DIB Setting indicates that a Debug instruction interrupt exception has occurred

Automatically clears when you enter Debug mode

DDBS Setting indicates that a Debug data interrupt exception has occurred

Automatically clears when you enter Debug mode

DBp Setting indicates that a Debug breakpoint exception occurred

Automatically clears when you enter Debug mode

DSS Setting indicates that a Debug single-step interrupt exception occurs

Automatically clears when you enter Debug mode

The bit or field in the Debug register is updated only when the Debug exception occurs

or when the exception occurs in Debug mode.

3.27 Debug Exception Program Counter register (24,0)

The Debug exception counter (DEPC) is a 64-bit read/write register that contains the

address to continue processing after the exception is processed. This register is updated by the

hardware with a debug exception or an exception in debug mode.

For the exact debug exception and the exact debug mode exception, the contents of the

DEPC register are one of the following:

 Instruction virtual address, which is the direct cause of the exception, or

 The virtual address of a previous branch or jump instruction (when the instruction is in the branch delay

slot, the instruction delay bit DBD is set in the Debug register).

Figure 3-29 shows the format of the DEPC register.

6370

DEPC

64

Figure 3-29 DEPC register

3.28 Performance Counter register (25, 0/1/2/3)
The loong chip 3 processor defines four (two groups) of performance counters that map

to sel 0, sel 1, sel 2, and sel 3 in register CP0, respectively.

When reset, the initial values assigned to the two control registers of PerfCnt register are:

PerfCnt, select 0 =0xc0000000

58

控制寄存器 sel 0

计数寄存器 sel 0

PerfCnt, select 2 =0x40000000
The purpose of these four registers is shown in table 3-25, and the format of each register

is shown in figure 3-30 (the two groups have the same format)

The enable bit definition of the register is shown in table 3-26:

Table 3-25 performance counters list

Performance
counter

sel Purpose to describe

0 The select 0 Control register 0

Select 1 Counting register 0

1 Select 2 Control register 1

Select 3 Counting register 1

Each counter is a 64-bit read/write register and increments itself every time a countable

event occurs in the associated control domain.Each counter can count an event independently.

31 30 29711 105 4 3 2 1 0

M W. 0 The
Event

IE U s. K. EXL

1 1 19 6 1 1 1 1 1

671

Event Count

64

Figure 3-30 performance counter register

When the first digit (63 bits) of the counter becomes 1 (counter overflow), the counter

will trigger an interrupt and Cause the PCI bit of the register to be set to 1 (if there are multiple

counters, the overflow bit or of multiple counters).After the counter overruns, the count

continues regardless of whether the interrupt is notified.Table 3-26 describes the definition of

the count enabled bit.Table 3-27 and

Tables 3-28 describe the events for counters 0 and 1 respectively.

59

Table 3-26 count enabled bit definitions

Count the enabled bits Count Qualifier(CP0 Status register field)

M Whether there is another set of counters

1 - is

0 - no

W. Count register bit width

0 - 32 bits

1 - 64 bits

K. KSU = 0 (kernel mode), EXL = 0, ERL = 0

s. KSU = 1 (superuser mode), EXL = 0, ERL = 0

U KSU = 2 (normal user mode), EXL = 0, ERL = 0

EXL E to the l is equal to 1, ERL is equal to 0

Table 3-27 counter 0 events

The event signal describe

0000 Cycles cycle

0001 Brbus. Valid Branch instruction

0010 Jrcount JR instruction

0011 Jr31count The JR directive and the field rs=31

0100 Imemread. Valid &

imemread_allow

Level I-cache missing

0101 Rissuebus0. Valid Alu1 operation has been launched

0110 Rissuebus2. Valid Mem operation has been launched

0111 Rissuebus3. Valid Operation Falu1 has been launched

1000 Brbus_bht BHT guesses the instruction

1001 Mreadreq. Valid &

Mreadreq_allow

Read from main memory

1010 Fxqfull Fixed number of times the launch queue is full

1011 Roqfull The number of times the queue is full

1100 Cp0qfull The number of times the CP0 queue is full

1101 Exbus. Ex & excode = 34, 35 Tlb refills the exception

1110 Exbus. Ex &

Excode = 0

exception

1111 Exbus. Ex &

Excode = 63

Internal exception

Table 3-28 counter 1 events

The event signal describe

0000 Cmtbus? The valid Commit operation

60

0001 Brbus. Brerr Branch prediction failure

0010 Jrmiss JR prediction failure

0011 Jr31miss JR and rs=31 prediction failure

0100 Dmemread. Valid &

Dmemread_allow

Level 1 d-cache missing

0101 Rissuebus1. Valid Alu2 operation has been launched

0110 Rissuebus4. Valid Operation Falu2 has been launched

0111 Duncache_valid &

Duncache_allow

Access uncached

1000 Brbus_bhtmiss BHT got the wrong guess

1001 Mwritereq. Valid &

Mwritereq_allow

Written to main memory

1010 Ftqfull The number of times a floating-point pointer
queue is full

1011 Brqfull The number of times a branch queue is full

1100 Exbus. Ex &

Op = = OP_TLBPI

Lack of Itlb

1101 Exbus. Ex The total number of exceptions

1110 Mispec Loading speculative missing

1111 CP0fwd_valid The CP0 queue is loaded forward

3.29 ECC register (26,0)
Loongson 3 USES the 26 ErrCtl register, which is optional in the MIPS64 standard, for ECC

validation.Figure 3-31 shows the format of the DEPC register.The ECC register

fields are described in tables 3-29.

638 70

0 ECC

58 8

Figure 3-31 ECC register

Table 3-29 ECC register fields

The domain describe

0 Retained. You must press 0 to write and return 0 on read.

ECC A double-word check code associated with the Cache

3.30 CacheErr register (27, 0/1)
Loongson 3 completes the ECC verification of loongson 3 in the MIPS64 standard by

hardware and software. The hardware is only responsible for checking the error. After

61

checking the data error, the content is saved in the control register such as CacheErr, and the

concurrent exception is corrected by the software.

Figure 3-32 shows the format of the CacheErr register,

Table 3-30 describes the fields of the CacheErr register.Figure 3-33 shows the format of

the CacheErr1 register, as described in table 3-31

The field of the CacheErr1 register.

62

63 4 5 2 1 0

58 4 2

0 ECCWay ECCType

Figure 3-32. CacheErr register

Table 3-30 fields of the CacheErr register

The domain describe

0 Retained. You must press 0 to write and return 0 on read.

ECCWay Different encodings indicate different errors in the Cache if the Cache check is incorrect

ECCType 00- instruction

cache error 01- data

cache error 10-

level 2 cache error

11- chip interface bus error

630

ECCAddr

64

Figure 3-33 CacheErr1 register

Table 3-31 fields of the CacheErr1 register

The domain describe

ECCAddr The virtual address at which validation error occurred

3.31 The TagLo(28) and TagHi (29) registers
The TagLo and TagHi registers are 32-bit read/write registers used to hold the labels and

state of the level 1 / level 2 Cache The CACHE and MTC0 instructions are written to the Tag

register.

Figure 3-34 shows these registers for level The format of the 1 Cache(P-Cache) operation.Table 3-32 lists TagLo
and TagHi

63

TagHi 寄存

DataHi 寄存

TagLo register

318

76

54

30

PTAG [23:0] CS SCSETI 0

24 2 2 4

 314 30

 0 PTAG [doth

 28 4

Figure 3-34 TagLo and TagHi registers (p-cache)

Table 3-32 Cache Tag register field

The domain describe

PTAG Specifies the 39:12 bits of the physical address.

CS Specifies the state of the Cache.

SCSETI The group number corresponding to the Cache line in the second-level Cache (the
second-level Cache field is 0)

0 Retained. You must press 0 to write and return 0 on read.

3.32 Registers DataLo (28,1) and DataHi (29,1)
DataLo and DataHi are read-only registers used only to interact with and diagnose cache

data queues. The IndexLoadTag operation of the CACHE directive reads the corresponding

data to the DataLo or DataHi registers. Figure 3-35 lists the formats of the DataLo register and

the DataHi register, respectively.

 DataLo register

6332

310

 0 The
data

 32 32

6332 310

0 The
data

32 32

Figure 3-35 DataLo and DataHi registers

64

3.33 ErrorEPC register (30,0)
The ErrorEPC register is similar to the EPC register except for the exceptions for ECC

and parity errors.It is used to store program counters during reset, software reset, and non-

masking interrupt (NMI) exceptions.

 The ErrorEPC is a read/write register that contains the virtual address where an

instruction is restarted after processing an error. Figure 3-36 shows the format of the ErrorEPC

register.

630

ErrorEPC

64

Figure 3-36 ErrorEPC register

3.34 DESAVE register (31,0)
The DESAVE register is a read-write 64-bit register. Its function is a simple register that

is used to debug exception handling to save the value of a general-purpose register so that it

retains other contexts.

Figure 3-37 shows the format of the DESAVE register.

630

DESAVE

64

Figure 3-37 DESAVE register

3.35 CP0 instruction
The CP0 instructions defined by the godson-2 processor are listed in table 3-33.

Table 3-33 CP0 instructions

OpCode The Description MIPS ISA

DMFC0 Fetch a double word from register CP0 III.

DMTC0 Write a double word to register CP0 III.

MFC0 From the CP0 register i.

MTC0 Write to register CP0 i.

TLBR Press Index to read the TLB table entry III.

TLBWI Write the TLB table entry by Index III.

65

TLBWR Write the TLB table entry at Random III.

TLBP Find the matched index in TLB III.

The CACHE Cache operation III.

ERET Abnormal return III.

DERET The Debug return EJTAG

DI Close the interrupt MIPS32 R2

EI Open the interrupt MIPS32 R2

RDHWR Read hardware register MIPS32 R2

RDPGPR Read from the shadow register MIPS32 R2

WRPGPR Write to shadow register MIPS32 R2

SDBBP Software breakpoints EJTAG

related
The loongson processor can handle pipeline correlation in hardware, including CP0

correlation and memory access correlation, so CP0 instructions are not required

NOP instruction to correct the instruction sequence.

66

4 Organization and operation of a CACHE

Loongson 3 USES three separate caches:

Level 1 instruction Cache: a total of 64KB, the Cache line size of 32 bytes, using a four-

way group linked structure.

Level 1 data Cache: a total of 64KB, the Cache line size of 32 bytes, using the four-way

group linked structure, using the write back strategy.Level 2 hybrid Cache: there are four level

2 Cache modules on the chip that communicate with the processor core via a 128-bit AXI bus.

Each second-level Cache module is globally addressable. The Cache line size is 32 bytes,

with a capacity of 1M. The four-way group structure is adopted, and the write-back strategy is

adopted.

4.1 Summary of the Cache
A fixed-point access to a level-1 Cache takes three clock cycles, and a floating-point

access to a level-1 Cache takes four clock cycles.Each level Cache has its own data path,

allowing simultaneous access to both caches.A level 1 Cache has 128 bit read, write, and

rescaling paths.

The second-level Cache USES a 256-bit data path that is accessed only when the first-

level Cache is invalidated.Level 2 Cache and level 1 Cache cannot be accessed at the same

time. When level 1 Cache is disabled, access to level 2 Cache will cost at least 14 cycles. (in

loongson 3, the core and level 2 Cache need to communicate via a cross-switch, so an

additional 6 beats are required.)The second-level Cache backfills the first-level Cache with

128 bits of data per clock cycle.

The primary Cache USES a virtual address index and physical address flag, while the

secondary Cache USES both physical addresses.The virtual address index may cause

inconsistencies, which are currently guaranteed by the operating system of loongson 3.

Loongson 3 USES a directory-based Cache consistency protocol to ensure that writes to

each processor core and IO are observed correctly by other cores and IO.A directory is

maintained in the secondary Cache.For each level 2 Cache line, the directory USES a 32-bit

bit vector to record whether each level 1 Cache (including the instruction and data Cache) has

a backup of that Cache line.Loongson 3 USES hardware to maintain the consistency between

the first-level instruction Cache, the first-level data Cache, the second-level Cache and the HT

external devices. The software does not need to use the Cache instruction to maintain the

consistency.

67

4.1.1 Non-blocking Cache
Loong chip 3 implements non-blocking Cache technology.A non-blocking Cache is one

of several operations that follow by allowing the Cache to be invalidated

Cache invalidated or hit access operations continue to improve the overall performance

of the system.

In a blocking Cache design, when a Cache failure occurs, the processor suspends

subsequent accesses.At this point, the processor begins a storage cycle, fetches the requested

data, fills it into its Cache, and then resumes execution.Depending on the design of the memory

system, this operation will take up a large number of clock cycles.

In a non-blocking Cache design, however, the Cache is not paused on an

invalidation.Loongson 3 supports multiple misses. It can support up to 24 Cache failures.

When a level 1 Cache is invalidated, the processor checks the level 2 Cache to see if the

desired data is in it, and if the level 2 Cache is still invalidated, it needs to access the main

memory.

68

The non-blocking Cache structure in loongson 3 makes more efficient use of loop

unwinding and software flow.In order to maximize the advantages of a Cache, Load should be

performed as early as possible before using an instruction to access data.

For I/O systems that require sequential access, the default setting for loongson 3 is

blocked Uncached access.Loongson 3 provides the prefetch instruction, which can be used to

prefetch the data to the first level by loading it into the zero fixed-point register

The Cache.In addition, the DSP engine in loongson 3 can prefetch the data in memory or

IO into the second-level Cache.

4.1.2 Replacement strategy
Both level 1 and level 2 caches use random substitution algorithms.But the second level

Cache provides a locking mechanism.By configuring the lock window register, you can ensure

that up to four locked areas are not replaced out of the secondary Cache (see chapter 4 of the

loggson 3A1000 processor user manual for details).

4.1.3 The parameters of the Cache
Table 4-1 shows some of the parameters of the three caches

Table 4-1 Cache parameters

parameter Instruction Cache Data Cache Level 2 Cache

The Cache size 64 KB 64 KB 1MB (total 4MB)

Associative degree The 4 channels are
connected

The 4 channels are
connected

The 4 channels are connected

Replacement strategy Random method Random method Random method (lockable)

Block size (line size) 32 bytes 32 bytes 32 bytes

The Index (Index) Virtual address 13:5 bits Virtual address 13:5 bits Physical address 17:5 bits1

Mark (Tag) Physical address 47:12
bits

Physical address 47:12 bits Physical address 47:12 bits

Write policy Do not write Write back method Write back method

Reading strategies Non-blocking (2
simultaneous)

Non-blocking (24
simultaneous)

Non-blocking (8
simultaneous)

Read the order Keyword first Keyword first Keyword first

Write the order Do not write sequential

Checking devices parity ECC check ECC check

4.2 First-order instruction Cache
The first-level instruction Cache size is 64KB, using the four-way group structure. The

Cache block size (also known as the Cache line) is 32 bytes and can hold eight instructions.

Because of the 128-bit read path adopted by loongson 3, four instructions can be sent to the

superscalar scheduling unit per clock cycle.

The level 1 instruction Cache implements parity.When a parity error occurs in the read-

69

level Cache, the hardware automatically invalidates the corresponding Cache line and retrieves

the correct value from the second-level Cache.The entire process requires no software

intervention.

Which of the four secondary Cache modules a physical address falls into is determined by the routing configuration register of the crossover switch.

70

4.2.1 The organization of the instruction Cache

Figure 4-1 shows the structure of the first-level instruction Cache.The Cache is mapped

in four-way groups, each containing 512 index entries.Select the corresponding Tag and Data

according to the Index.After the Tag is read from the Cache, it is compared to the translated

portion of the virtual address to determine which group contains the correct data.

When the first-level instruction Cache is indexed, each of the four groups returns its

corresponding Cache line, which is 32 bytes in size,

 The Cache line takes a 34-bit flag and a 1-bit significant bit.

Figure 4-1 organization of instruction caches

4.2.2 Access to the instruction Cache
The loong chip 3 instruction Cache USES the virtual address index and the physical

address flag four - way group associative structure.As shown in figure 4-2, the lower 14 bits

of the address are used as the index of the instruction Cache.The 13:5 bits are used to index

512 items.Each of these items contains four more 64 bits

Use the 4:3 bit to choose between the four words.

When indexing the Cache, the Data in the four blocks and the corresponding physical

address Tag are taken from the Cache. Meanwhile, the high-order address is transformed by

Instruction Translation look-aside Buffer (ITLB), and the transformed address is compared

with the Tags in the four groups. If there is a Tag that matches, the Data in the group will be

used.This is called a "level 1 Cache Hit".If none of the four groups of tags matches, the

operation is aborted and the second level Cache is accessed.This is called a "level 1 Cache

miss".

71

Figure 4-2 instruction Cache access

72

4.3 Level 1 data Cache
The data Cache has a capacity of 64KB and USES a four-channel structure. The Cache

block size is 32 bytes, or 8 words. The read and write data paths in the data Cache are 128 bits.

The data Cache USES the virtual address index, the physical address flag.The operating

system needs to resolve page coloring consistency issues that may be caused by virtual

addresses.The data Cache is non-blocking, which means that a failure in the data Cache does

not cause the pipeline to stop.The write strategy used in a data Cache is write back, that is,

write data to a level 1 Cache without causing a level 2 Cache or main memory

The update. The write back policy improves global performance by reducing the traffic

from the level 1 Cache to the level 2 Cache.Only in data Cache

When the row is replaced, the data is written to the second level Cache.

Level 1 data Cache implements ECC validation.When an ECC error occurs in the read-

level data Cache, the hardware will automatically correct the result of the Cache read and

update the contents of the Cache to the corrected value.The entire process requires no software

intervention. When a two-bit ECC error occurs in the read level 1 data Cache, an exception

will be made for the software to handle.

4.3.1 Organization of data Cache
Figure 4-3 shows the organization of a data Cache.This is a four-way Cache with 512

index entries.When accessing the Cache index, the tags and Data in all four groups are accessed

at the same time.The Tag in the four groups is then compared with the transformed physical

address portion to determine which data row is hit.

When indexing a data Cache, all four groups return their respective Cache rows. The

Cache block size is 32 bytes, and the Cache line USES 34 bits for the physical flag address, 1

bit for the dirty bit, and 2 bits for the status bits (INV, SHD, and EXC). The INV status

indicates that the Cache line is invalid, the SHD status indicates that the Cache line is readable,

and the EXC status indicates that the Cache line is readable and writable.

73

Figure 4-3 organization structure of data Cache

4.3.2 Access to the data Cache
The data Cache of loongson no. 3 adopts a four-way associative structure of virtual

address index and physical address flag.Figure 4-4 shows how virtual addresses are

decomposed when a data Cache is accessed.

Figure 4-4 data Cache access

As shown in figure 4-4, the lower 14 bits of the address are used as an index to the data

Cache.The 13:5 bits are used to index 512 items, among which

Each item also includes four 64-bit doublewords.Four doublewords are selected using 4:3

bits, and the 2:0 bit is used to select one of the eight bytes of a doubleword.

The data Cache accesses the failed instruction (the instruction does not hit the Cache line

in SHD state or the instruction hits the Cache line in SHD state), then accesses the second level

Cache.If the second level Cache hits, the Cache block retrieved from the second level Cache

is sent back to the first level Cache.If the second level Cache fails, the memory is accessed

and the second level Cache and data Cache are filled with the values retrieved from memory.

4.4 Level 2 Cache
Loongson 3 includes four on-chip level 2 Cache modules.Each level 2 Cache module has

74

a capacity of 1MB for a total of 4MB.Each Cache line is 32 bytes in size.The main features of

the second-level Cache module include:Four-way group is connected to the 128 AXI interface,

and eight Cache access queue, key priority, receives the request to return the data read failure

eight fastest racquet, through directory support Cache coherence protocol, can be used for on-

chip multi-core structure (also can be directly and single processor IP butt), the size of the soft

IP grade level 2 Cache module can be configured (512 KB / 1 MB), adopts four-way group

linked structure, runtime dynamically shut, support the ECC check, support DMA and

prefetching read consistency, speaking, reading and writing.16 secondary Cache hashes are

supported, and secondary caches are locked by window to ensure atomicity of read data return.

The second level Cache also maintains a directory for each Cache line to record whether

or not a backup of that Cache line is included in each level Cache.The write strategy for the

second level Cache is write back.The write back strategy reduces the bus traffic and improves

the global performance of the system. Data is only written to memory if the second level Cache

line is replaced.

The second level Cache implements ECC validation.When a single-digit ECC check error

occurs in the read-level Cache, the hardware will automatically correct the result of the Cache

read and update the contents of the Cache to the corrected value.The entire process requires

no software intervention. When a two-bit ECC error occurs in the read secondary data Cache,

an exception will be made for the software to handle.

4.4.1 Organization of level 2 caches
A second-level Cache is a mixed Cache that contains both instructions and data.The

second level Cache module supports the Cache consistency protocol.In loongson 3, the second-

level Cache is uniformly addressed on all chips, and each second-level Cache block has a fixed

home node.According to Cache consistency requirements, the loongson 3's second-level Cache

has two roles: home for the first-level Cache and Cache for memory.When the second level

Cache is accessed, the Data and tags of four groups are accessed at the same time, and the four

tags are fetched and the physical Data are accessed respectively

75

The higher part of the address is compared to determine whether the data still resides in

the Cache.

Each Cache line contains a 32 bytes of data, 31 the physical address of the flag, one Cache

status bits (representing the corresponding Cache in level 2 Cache is valid), 1 inventory status

bits (indicates whether the corresponding Cache block in a level 1 Cache in the exclusive or

Shared state) and 1 W (whether said the bank was written).

4.4.2 Access to the second level Cache
The second level Cache is accessed only if the first level Cache is disabled.The second

level Cache USES the physical address index physical address flag.As shown in figure 4-5,

low order addresses are used to index the second level Cache.All four groups will return their

respective Cache rows. 16:5 bits are used as the index of the second level Cache. Each indexed

entry contains four 64-bit binary data.Use 4:3 bits to choose between 4 double words. The 2:0

bit is used to select a certain 8 bytes in a double word.

Figure 4-5. Level 2 Cache access

4.5 Cache algorithm and Cache consistency properties
Loongson 3 implements the Cache algorithm and Cache consistency properties shown in

table 4-2.

Table 4-2 consistency properties of loongson 3 Cache

Attribute
classificat

ion

Conforman
ce code

reserve 0

reserve 1

Non-caching (Uncached) 2

Coherent cache (Cacheable coherent) 3

76

reserve 4

reserve 5

reserve 6

Uncached Accelerated (Uncached Accelerated) 7

77

4.5.1 Non-caching (Uncached, consistency code 2)

If a page USES a non-cache algorithm, the processor will directly emit a double-word,

partial double-word, word, and partial word read or write request to main memory for any

Load or Store operation anywhere on the page, without going through any level of Cache.The

non-cache algorithm is implemented by blocking.

4.5.2 Coherent cache (Cacheable coherent code 3)
A row with this property can reside in the Cache, and the corresponding save and fetch

operations only access the first-level Cache.When a level 1 Cache expires, the processor

checks the level 2 Cache to see if it contains the requested address.If the second level Cache

hits, the data is populated from the second level Cache.If the second level Cache misses, the

data is pulled from main memory and written to the second level Cache and the first level

Cache.

Because there are multiple processor cores and IO devices in loongson 3 that can access

main memory, the loongson 3 hardware implements the Cache consistency protocol, so it is

not necessary to actively maintain the Cache consistency by using the Cache instructions in

the software.

4.5.3 Non-caching Accelerated (Uncached Accelerated, consistency code 7)
The non-caching speed up property is used to optimize the same type of Uncached

memory operation performed in a sequential sequence in a continuous address space.The

optimization method is to collect the memory operation of this property by setting the buffer.

As long as the buffer is not satisfied, the data of these memory operations can be put into the

buffer.The buffer is the same size as a Cache line.Storing data in a buffer is the same as storing

it in a Cache.When the buffer is full, start block writing. During the collection of sequential

stored number instructions, if other types of Uncached stored number instructions are inserted,

the collection is suspended and the data saved in the buffer is output in byte write mode.

The non-cache accelerated property speeds up sequential Uncached access, which is

suitable for fast output access to the display device store.

4.6 The Cache consistency

Longchip 3 realizes the consistency of the Cache based on the directory. The hardware

guarantees the consistency of the data between the first-level instruction Cache, the first-level

data Cache, the second-level Cache, the memory and the IO devices from HT, without

requiring the software to use the Cache instruction to force the Cache.Each Cache line in

loongson 3 has a fixed host level 2 Cache module.The directory information in the Cache line

is in host two

78

Maintained in the level Cache module.The directory USES a 32-bit bit vector to reserve

track of the level 1 Cache (including the level 1 instruction Cache and the level 1 data Cache)

that has a backup of each Cache line.Each level Cache block has three possible states: INV

(invalid state), SHD (Shared state, readable), and EXC (exclusive state, readable and

writable).The transitions of the three states are shown in figure 4-6.When the read instruction

or fetch instruction fails, the processor core will issue a Reqread request to the second-level

Cache module. After receiving the Repread reply from the second-level Cache module, the

first-level Cache of the processor core will obtain a Cache backup of SHD status.When the

first-level Cache fails, the processor core sends a Reqwrite request to the second-level Cache

module. After receiving the Repwrite reply from the second-level Cache module, the first-

level Cache of the processor core gets an EXC Cache backup.When a level 1 Cache

replacement occurs in the processor core, it is written back to the level 2 Cache module through

Reqreplace, and the level 2 Cache module informs the processor that the core replacement

request has been processed through the Repreplace reply.The second-level Cache module can

invalidate a level-1 Cache backup in SHD state by sending Reqinv request to the processor

core. The processor core changes the level-1 Cache backup to INV state and replies to the

level-2 Cache module through Repinv.The secondary Cache module can write back an EXC

state of the primary Cache backup, the processor, by sending a Reqwtbk request to the

processor core

79

The kernel changes the level 1 Cache backup to EXC state and replies to the level 2 Cache

module via Repwtbk.The second-level Cache module can write back and invalidated a level-1

Cache backup in EXC state by sending a Reqinvwtbk request to the processor core, which puts

the level-1 Cache backup in INV state and replies to the level-2 Cache module via Repinvwtbk.

Figure 4-6. Loongson 3's cache state transition

EXC Reqinvwtbk SHD

Reqread Reqwrite

Reqreplace
Reqinvwtbk Reqinv

Reqreplace

INV

80

5 Memory management

The logodson GS464 processor core provides a fully functional memory management unit

(MMU) that converts virtual addresses to physical addresses using TLB on the chip.

This section describes the virtual and physical address Spaces of the processor core, the

translation of virtual addresses to physical addresses, the operation of TLB in implementing

these transformations, the Cache, and the system control coprocessor (CP0) register that

provides the software interface for TLB.

5.1 Quick lookup of table TLB
Mapping virtual addresses to physical addresses is usually done by TLB (there are also

virtual address translation without TLB, such as CKSEG0 and CKSEG1 kernel address space

segments (see figure 5-5) without page mapping, where the physical address is obtained by

subtracting a base address from the virtual address).. The first level of TLB is JTLB, which

also ACTS as data TLB. In addition, the loongson GS464 processor core contains independent

instruction TLB to ease the competition for JTLB.

5.1.1 JTLB
In order to be able to quickly map virtual addresses to physical addresses, the loongson

GS464 processor core USES a larger, fully associative mapping mechanism called TLB, JTLB

for instruction and data address mapping, indexed with their process Numbers and virtual

addresses.

JTLB is organized in pairs of odd/even table entries, mapping the virtual address space

and address space identifiers to the 256T physical address space. By default, JTLB has 64 pairs

of odd/even table entries, allowing 128 pages to be mapped.

There are two mechanisms to help control the size of the mapped space and the

substitution strategy for different regions of memory, respectively.

First, the page size can be from 4KB to 16MB, but must be quadrupled. The CP0 register

PageMask is used to record the size of the mapped page, and this record is loaded into the TLB

when a new table entry is written. The logodson GS464 processor core can support pages of

different sizes at the same runtime, allowing the operating system to generate purpose-specific

mappings: for example, the frame buffer in video codec processing can be memory-mapped

using just one table entry.

Second, loongson GS464 processor core can use a random substitution strategy to select

TLB table items to be replaced when TLB is missing.The operating system can also host a

certain number of pages in TLB without being randomly replaced. This mechanism helps the

81

operating system to improve performance and avoid deadlocks.This mechanism also makes it

easier for real-time systems to provide specific access to a key piece of software.

In addition, JTLB maintains the Cache consistency attribute for each page, and each page

is marked with a specific bit: without Cache (Uncached), without coherent Cache (Cacheable

Noncoherent), or without Cache Accelerated (Uncached Accelerated).

5.1.2 Instruction TLB
Loongson GS464 processor core instruction TLB (ITLB) has 16 table entries, which

minimizes the capacity of JTLB and reduces the time-critical path when mapping through a

large associative array, reducing power.Each ITLB table entry can map to only one page, and

the page size is specified by the PageMask register. The mapping of ITLB instruction addresses

and data addresses can be executed in parallel, thus improving performance. When the table

item in ITLB is invalid, the corresponding table item is searched from JTLB, and an ITLB

table item is randomly selected for replacement. The operation of ITLB is completely

transparent to the user.The processor guarantees that ITLB is consistent with JTLB, and when

using the nuclear mindset instruction to modify JTLB, ITLB

Will be automatically cleared.

5.1.3 Hit and miss

If the virtual address matches the virtual address of a table item in the TLB (that is, a TLB

hit), the physical page number is taken from the TLB and joined with the offset to form the

physical address.

If the virtual address does not match the virtual address of any table entry in the TLB (the

TLB fails), the CPU generates an exception and the software refills the TLB based on the in-

memory page table.The software can override either a specified TLB table entry or any TLB

table entry using a hardware-provided mechanism.

5.1.4 A number of hits
The loongson GS464 processor does not provide any detection and disabling mechanisms

when it checks the virtual address in a TLB to match the virtual address of more than one table

item, unlike the design of earlier MIPS processors.Multiple hits do not physically break the

TLB, so multiple hit detection mechanisms are unnecessary.However, the multiple hit situation

is not defined, so the software should control not to allow multiple hits to occur.

5.2 Processor mode
The loongson GS464 processor core has three modes of operation, but unlike other MIPS

processors, the loongson GS464 processor core supports only one address mode, one

instruction set mode, and one tail mode.

82

5.2.1 Processor mode
The processor priority of the following three modes is reduced in order:

 Kernel mode (highest system priority) : in this mode, the processor can access and change any

register. The innermost kernel of the operating system runs in kernel mode.

 Management mode: the processor's priority is reduced and some less critical parts of the operating system run
in this mode;

 User mode (lowest system priority) : this mode reserves different users from interfering with each other.

Switching between the three modes is accomplished by the operating system (in kernel

mode) setting the corresponding bit of the KSU domain in the status register.When an error

(ERL position bit) or an exception (EXL position bit) occurs, the processor is forced to switch

to kernel mode.Table 5-1 lists the Settings of KSU, EXL, and ERL when the three modes are

switched. Empty table entries can be ignored.

Table 5-1 processor working mode

Kernel mode

KSU

4:3

ERL

2

EXL

1

describe

10 0 0 User mode

01

00

0

0

0

0

Management mode

0

1

Exception level

 1 The error level

83

5.2.2 Mode of address

The core of the loongson GS464 processor only supports 64-bit virtual address mode, and

the hardware guarantees compatibility with 32-bit address mode.

5.2.3 Instruction set mode
The core of loongson GS464 processor realizes the complete instruction set of MIPS64R2.

In addition, some integer and floating point instructions are added. The added instructions are

shown in appendix A and appendix B.

5.2.4 Tail model
The loongson GS464 processor core only works in small tail mode.

5.3 Address space
This section describes virtual address Spaces, physical address Spaces, and methods for

virtual and real address translation through TLB.

5.3.1 Virtual address space
The loongson GS464 processor core has three virtual address Spaces: user address space,

administrative address space, and kernel address space, each of which is 64-bit and contains

discrete address space segments, the largest of which is 256T (2) bytes.48

These three address Spaces are described in sections 5.3.4 through 5.3.6.

5.3.2 Physical address space
By using 48-bit addresses, the processor has a physical address space size of 256T(2)

bytes.48The following sections detail methods for virtual and real address translation.

5.3.3 Virtual and real address translation
When translating virtual and real addresses, the virtual address given by the processor is

first compared with the virtual address stored in TLB.When the virtual page number (VPN) is

equal to the VPN domain of a TLB table entry, and if either of the following is true:

 The Global bit of the TLB table entry is 1

 The ASID fields for both virtual addresses are the same.
TLB hits. If the above conditions are not met, the CPU will generate a TLB invalidation

exception to enable the software to refold the TLB based on the in-memory page table.

If the TLB hits, the physical page number will be extracted from the TLB and combined

with the Offset in the page to form the physical address.The Offset in the page does not go

through TLB in the process of virtual and real address conversion.

84

虚地址

（1) Virtual address (VA) represented by
virtual page number (VPN)
Compare with the corresponding field in TLB;

(2) If there is a consistent
situation, it means that the high-
order page frame number (PFN) of the
physical address (PA) is input from
the TLB

TLB
Entry

(3) The offset Offset does not go

through the TLB, but merges with the

TLB

物理地址

Offset VPNASID

PFN

Offset PFN

G ASID The
VPN

Figure 5-1 overview of virtual and real address translation

As shown in figure 5-1, virtual address translation is extended by an 8-bit address space

identifier (ASID), which reduces the frequency of TLB refreshes during context switching.

The ASID is stored in the CP0 EntryHi register. The Global bit (G) is in the corresponding

TLB table entry.

Figure 5-2 shows the real and virtual address translation in 64-bit mode, with a maximum

page size of 16MB and a minimum page size of 4KB.

The top half of the figure shows the page size of 4K bytes. Offset in the page occupies 12

bits in the virtual address, and the remaining 36 bits in the virtual address are virtual page

number VPN, which is used to index 64 4g page table items.

The bottom half of the figure shows the page size of 16M bytes, the Offset in the page

occupies 24 bits in the virtual address, and the remaining 24 bits in the virtual address are

virtual page number VPN, which is used to index 16M page table items.

85

The virtual address space contains 64 gigabytes of 4-kbyte pages

71 64 63 62 61 48 47 36 bits = 64G pages 12 11 0

8 14 36 12

TLB To
complete

Offset Direct
transfer

Virtual address
63:62 bit with 48 bit
physical address
S l t d i

Offset Direct
transfer

71 64 63 62 61 48 47 24 23 0

8 14 24 24
24bits = 16M pages

The virtual address space contains 16M 16-mbyte
pages

TLB

TLB

PFN Offset
0 47

TLB To
complete

ASID

 The
VPN

Offset

ASID The VPN Offset

Figure 5-2. 64-bit mode virtual address translation

5.3.4 User address space
In User mode, there is only a single, unified virtual address space called User Segment

with a size of 256T (2) bytes and the name XUSEG.48

Figure 5-3 shows the user virtual address space, which can be accessed in user mode,

administrative mode, and kernel mode.

The user segment starts at address 0, where the currently active user process resides

(XUSEG).TLB maps the XUSEG segment in the same way in different modes and controls

access to the Cache.

When the value of the processor's Status register meets three conditions: KSU=10,

EXL=0, and ERL=0, the processor works in user mode.2

86

Figure 5-3 overview of user virtual address space in user mode

All available user mode virtual addresses from bit 63 to bit 48 must be 0, access to any

address from bit 63 to bit 40 not all 0 will result in an address error exception, in the XUSEG

address segment TLB missing using XTLB re fill vector.The XTLB refilling vector of the

loongson GS464 processor core has the same exception entry address as the TLB refilling

vector in 32-bit mode.

5.3.5 Manage address space
Management mode is designed for hierarchical operating systems. In a hierarchical

operating system, the real kernel runs in kernel mode and the rest of the operating system runs

in management mode.The managed address space provides code and data space to be accessed

by programs in managed mode.The TLB miss that manages the address space is handled by

the XTLB refill processor.

The administrative address space is accessible in both administrative and kernel mode.

When the value of the Status register of the processor meets three conditions at the same

time: KSU=01, EXL=0, and ERL=0, the processor works in management mode.2Figure 5-4

shows an overview of the user and administrative address space in administrative mode.

0x0000 0000 0000 0000

XUSEG

256 TB
mapped

0x0001 0000 0000 0000
0x0000 FFFF FFFF FFFF

Address
Error

0xFFFF FFFF FFFF FFFF

87

0xFFFF FFFF FFFF FFFF

0xFFFF FFFF E000 0000

0xFFFF FFFF DFFF FFFF

CSSEG

0xFFFF FFFF C000 0000
0xFFFF FFFF BFFF FFFF

0x4001 0000 0000 0000
0x4000 FFFF FFFF FFFF

XSSEG

0x4000 0000 0000 0000
0x3FFF FFFF FFFF FFFF

0x0001 0000 0000 0000
0x0000 FFFF FFFF FFFF

XSUSEG

0x0000 0000 0000 0000

 Address
the Error

0.5 GB Mapped

 Address
the Error

256 TB Mapped

 Address
the Error

256 TB Mapped

Figure 5-4 user space and management space in management mode

 64-bit management mode, user address space (XSUSEG)
In administrative mode, when the user address space is accessed and the top two bits (63rd

and 62nd bits) of the 64-bit address are 00, the program USES a virtual address space named

XSUSEG, which covers all 2 (1T) bytes of the current user address space.248At this point, the

virtual address is extended, plus the 8-bit ASID domain, to form a unique virtual address in

the system.This address space starts at 0x0000 0000 0000 0000 and ends at 0x0000 FFFF FFFF

FFFF.

 64-bit management mode, current managed address space (XSSEG)
In administrative mode, when the top two bits of the 64-bit address (63rd and 62nd bits)

are 01, the program USES a currently managed virtual address space named XSSEG.2At this

point, the virtual address is extended, plus the 8-bit ASID domain, to form a unique virtual

address in the system.This address space starts at 0x4000 0000 0000 0000 and ends at 0x4000

FFFF FFFF FFFF.

 64-bit management mode, independent management of address space (CSSEG)
In managed mode, when the top two bits of the 64-bit address (63rd and 62nd bits) are

11, the program manages the virtual address space independently with a name of

CSSEG.2Addressing in CSSEG is compatible with addressing in SSEG in 32-bit mode.At this

88

point, the virtual address is extended, plus the 8-bit ASID domain, to form a unique virtual

address in the system.This address space starts at 0xFFFF FFFF C000 0000 and ends at 0xFFFF

FFFF DFFF FFFF.

89

5.3.6 Kernel address space

The processor works in kernel mode when the value of the processor's Status register

meets the following conditions: KSU=00 or EXL=1 or ERL=1.2

Every time the processor detects an exception, it enters kernel mode and stays there until

the exception return instruction (ERET) is executed.ERET

The instruction restores the processor to the mode in which the exception occurred.

The kernel-mode virtual address space is divided into different regions according to the

high virtual address, as shown in figure 5-5.

 64-bit kernel mode, user address space (XKUSEG)
In kernel mode, when user space is accessed and the top two bits of the 64-bit virtual

address are 00, the program USES a virtual address space named XKUSEG, which overrides

the current user address space.2At this point, the virtual address is extended, plus the 8-bit

ASID domain, to form a unique virtual address in the system.

 64-bit kernel mode, current managed address space (XKSSEG)
In kernel mode, when the administrative space is accessed and the top two bits of the 64-

bit address are 01, the program USES a virtual address space named XKSSEG, which is the

currently managed virtual address space.2At this point, the virtual address is extended, plus

the 8-bit ASID domain, to form a unique virtual address in the system.

 64-bit kernel mode, physical address space (XKPHY)
In kernel mode, when the top two bits of a 64-bit address are 10, the program USES a

virtual address space called XKPHY, which is a collection of eight two-byte kernel physical

address Spaces.248Accessing any storage location whose address is not 0 in bits 58 through

48 will cause an address error.Access to XKPHY does not undergo address shuffling through

TLB, but instead USES bits 47 through 0 of the virtual address as the physical address.Bits 61

through 59 of the virtual address control whether it passes through the Cache and the Cache

consistency property, which has the same meaning as the c-bit values on the TLB page

described in table 3-2.

 64-bit kernel mode, kernel address space (XKSEG)
In kernel mode, when the top two bits of a 64-bit address are 11, the program USES one

of the following address Spaces:2

 Kernel virtual address space XKSEG, at this point, the virtual address is expanded, plus the 8-

bit ASID domain, forming a unique virtual address in the system;

 Four 32-bit kernels are compatible with address Spaces, as described in the next section.

 64-bit kernel mode, compatible with address space (ckseg1:0, CKSSEG, CKSEG3)
In kernel mode, when the top two bits of 64-bit address are 11 and all bits of the virtual address

are 1 from bit 61 to bit 31, the program USES one of the following four 512M byte address Spaces,

90

0xFFFF FFFF FFFF FFFF
CKSEG3

0xFFFF FFFF E000 0000

CKSSEG

0xFFFF FFFF C000 0000

CKSEG1

0xFFFF FFFF A000 0000

CKSEG0

0xFFFF FFFF 8000 0000

0xC000 00FF 8000 0000

XKSEG

0xC000 0000 0000 0000

XKPHY

0x8000 0000 0000 0000

0x4001 0000 0000 0000

XKSSEG

0x4000 0000 0000 0000

0x0001 0000 0000 0000

XKUSEG

0x0000 0000 0000 0000

which is determined by bit 30 and bit 29:2

 0.5
GB

Mapped

 0.5 GB
Mapped

 0.5
GB

Unmapped
Cached

 0.5
GB

Unmapped
Cached

 The
Address

The Error

 Mapped

Unmapped

Address
the Error

 256
TB

Mapped

Address
the Error

 256 TB
Mapped

Figure 5-5 overview of user, management, and kernel address space in kernel mode

 CKSEG0: this 64-bit virtual address space does not pass through TLB and is compatible with

KSEG0 in 32-bit mode. The K0 field of the Config register controls whether the Cache and the Cache

consistency properties,

 CKSEG1: the 64-bit virtual address space does not pass through the TLB nor the Cache, with KSEG1 in 32-
bit mode

91

255 217 216 205 204 192

39

176 175

12

141 140 139

13

191 190 189 136 135 128

2 14 35 1 4 8

127 106 105 70 69 67 66 65 64

21 36 3

63 42 41

1 1 1

6 5 3 2 1 0

21 36 3 1 1 1

31 25 24 13 12 0

7 12 13

Mask……Page comparison mask
0. ……Write must be 0 and return 0 on read.

Compatible.

 CKSSEG: this 64-bit virtual address space is currently managed for the virtual address space,
with KSSEG in 32-bit mode

Compatible.

 CKSEG3: this 64-bit virtual address space is the kernel virtual address space and is compatible with KSEG3
in 32-bit mode.

5.4 System control coprocessor

The system control coprocessor (CP0) is responsible for supporting storage management,

virtual and real address translation, exception handling, and some privileged operations.The

loongson GS464 processor core has 26 registers CP0 and a 64-item TLB, each with a unique

register number.The following sections give an overview of registers related to memory

management.

5.4.1 Format of TLB table entries
Figure 5-6 shows the format of the TLB table entries, each of which has its own field in

the EntryHi, EntryLo0, EntryLo1, PageMask registers.

EntryHi, EntryLo0, EntryLo1, and the PageMask register and TLB entries are formatted

similarly.The only difference is that the TLB entry has a Global field (G bit), which is not in

the EntryHi register, but appears as a reserved field.Figure 5-7, figure 5-8, and figure 5-9

represent the domains of the TLB term in figure 5-6, respectively.

0 Mask 0

R 0 VPN2 G 0 ASID

0 PFN C D V 0

0 PFN C D V 0

Figure 5-6 TLB table entries

0 Mask 0

92

63 62 61 48 47 13 12 8 7 0

2 14 35 5 8

VPN2…. Virtual page number divided by 2 (maps 2 pages).

ASID…. Address space ID field. An 8-bit field for multiple processes to share TLB; For the same virtual page

number as other processes, each process has a different mapping.

R………Area. (00-> user, 01-> management, 11-> core) user matches virtual address 63:62 bits.

Fill……. Retained. Read 0, write ignore.

0………Retained. Write must be 0 and return 0 on read.

PFN…Page frame; The high value of a physical address.

C……. Specifies the consistency properties for the TLB page; See table 3-2.

D……. Dirty bits. If the bit value is set to 1, the corresponding page is marked dirty and therefore writable.

This bit is actually a write protection bit that the software can use to protect changes to the data.

V……. Significant bit. This bit setting indicates that the TLB table entry is valid; Otherwise, TLBL/TLBS will
fail.

G…….global bit. If the corresponding bits in Lo0 and Lo1 are set to 1, the ASID is ignored by the processor
during TLB lookup.

0 Retained. Write must be 0 and return 0 on read.

Figure 5-7. PageMask register

R The
Fill

VPN2 0 ASID

Figure 5-8 EntryHi register

63 42 41 June 5 3 2 1 0

 0 PFN C D V G

 22 36 3 1 1 1

63 42 41 June 5 3 2 1 0

 0 PFN C D V G
 2 2

 36 3 1 1 1

Figure 5-9 EntryLo0 and EntryLo1 registers

TLB page consistency attribute (C) specifies whether the page needs to be accessed

through the Cache, and if so, the consistency attribute of the Cache needs to be selected.Table

5-2 shows the Cache consistency attribute for the C bit.

93

Table 5-2 c-bit values for TLB pages

C (o) values Cache consistency attribute

0 reserve

1 reserve

2 Non-caching (Uncached)

3 Coherent cache (Cacheable Noncoherent)

4 reserve

5 reserve

6 reserve

7 Uncached Accelerated (Uncached Accelerated)

5.4.2 CP0 register
The CP0 register related to memory management is listed in table 5-3. The CP0 register is fully described in

chapter 1.

Table 5-3 memory management-related registers CP0

The register no. Register names

0 The Index

1 The Random

2 EntryLo0

3 EntryLo1

5 PageMask

6 Wired

10 EntryHi

15 PRID

16 The Config

17 LLAddr

28 TagLo

29 TagHi

5.4.3 The process of converting a virtual address to a physical address
During the virtual address to physical address conversion, the CPU compares the 8-bit ASID of the

virtual address (if global bit G is not set) with the ASID of the TLB entry to see if it matches.When

comparing asids, we also need to match the virtual address's height of 15-27 bits with the TLB item's

virtual page number according to the value of PageMask.If a TLB entry is matched, the physical address

and access control bits (C, D, and V) are extracted from the matching TLB entry.For a valid address

translation, the V bit of the matching TLB entry must be set, but the V bit value is not considered in the

match comparison.Figure 5-10 shows the TLB address translation process.

94

Virtual address (input)

VPN and
ASID

No, no, no, no

The address is
wrong

Exc
eptio
n
error

e f f e c t i v e
l y
The address?

In the
household
State?

no
The address is
wrong

Exc
eptio
n
error

management

State?

is

Valid
addres
s?

is

effectively
The

ad

dre

ss?

is

is
The mapping
Address?

no

Addres
s error
except
ion

Non-
mappe
d
access

Does VPN
match?

is

G = 1? no
(globally)

yes

V = 1? no
(effective)

is

D = 1? no

(dirty)

Whether is
C = 0112?

(cacheable
Noncoherent

ASID
horse

Match?
is

Write?

no

no

is

TLB
The
Mod

exce
ption

TLB
Invalid

except
ion

XTLB/TLB

Refill

Not
through
The
Cache

Physical address
(output)

access
The Cache

95

Figure 5-10 TLB address translation

5.4.4 TLB misses

If none of the TLB entries matches the virtual address, a TLB miss exception is thrown.If the

access control bits (D and V) indicate that the access is not legitimate, a TLB modification or a TLB

invalid exception is raised.If the C bit is equal to 011, the physical address retrieved2

96

Access memory through the Cache, otherwise not through the Cache.

5.4.5 TLB instruction

Table 5-4 lists all the instructions provided by the CPU for TLB operations.

Table 5-4 TLB instructions

opcode Instructio
ns

described

TLBP Search for matches in
TLB

TLBR Read the TLB entry of
the index

TLBWI Write the TLB entry of
the index

TLBWR Let me write random
TLB terms

5.4.6 The code example
The first example is how to configure TLB table entries to map a pair of 4KB pages.The kernel of

a real-time system mostly does this, and this simple kernel MMU is only used for memory protection,

so static mapping is sufficient, and all TLB exceptions are treated as error conditions (unreachable) in

all statically mapped systems.

1. Mtc0 r0,C0_WIRED# make all entries available to random replacement 2. Li r2,

(vpn2<<13)|(asid & 0xff); 2.

3. Mtc0 r2, C0_ENHI# set the virtual address

4. Li r2, (epfn < < 6) | (coherency < < 3) | (Dirty < < 2) | Valid < < 1 | Global)

5. Mtc0 r2, C0_ENLO0# set the physical address for the even page

6. Li r2, (opfn < < 6) | (coherency < < 3) | (Dirty < < 2) | Valid < < 1 | Global)

7. Mtc0 r2, C0_ENLO1# set the physical address for the odd page

8. Li r2, 0# set the page size to 4KB

9. C0_PAGEMASK mtc0 r2

10. Li r2, index_of_some_entry# needed for tlbwi only

11. Mtc0 r2, C0_INDEX# needed for tlbwi only tlbwr# or

tlbwi

A full-fledged virtual storage operating system (such as UNIX) that USES the MMU for memory protection and
for main storage and bulk storage

Page change of device. This mechanism allows applications to access larger storage devices rather than

just the space physically allocated by the system. This page-dependent mechanism requires dynamic

page mapping.Dynamic mapping is implemented through a series of different types of MMU exceptions,

and TLB refilled is the most common exception to this system.Below is a possible TLB refilling

97

exception control.

12. Refill_exception:

13. Mfc0 k0, C0_CONTEXT

14. Sra k0, k0, 1 Into the page table

15. Lw k1 and 0 (k0) # read page table

16. Lw k0, 4 (k0)

17. SSL k1, k1, 6

18. SRL k1, k1, 6

19. Mtc0 k1, C0_TLBLO0

20. SSL k0, k0, 6

21. SRL k0, k0, 6

22. Mtc0 k0, C0_TLBLO1

23. TLBWR # write a random entry

eret

This exception control handling is simple because its frequent execution can affect system

performance, which is why TLB rewrites the exception to assign independent exception vectors.This

code assumes that the required mapping is already established in the main memory page table. If not, a

TLB failure exception occurs after the ERET instruction. TLB failure exceptions are rare, which is

beneficial because it must compute the desired mapping and may require partial page tables to be read

from backup storage. TLB modification exceptions are used to implement read-only pages and tag

processes to clear pages where code needs to be modified. To protect different processes and users from

each other, virtual storage operating systems usually execute user programs in user mode.The following

example shows how to move from kernel mode to user mode.

24. Mtc0 r10, C0_EPC# assume r10 holds desired usermode address

25. Mfc0 r1, C0_SR# get current value of Status register

26. And r1,r1, ~(SR_KSU || SR_ERL)# clear KSU and ERL field

27. Or r1, r1, (KSU_USERMODE || SR_EXL)# set usermode and EXL bit

28. C0_SR mtc0 r1

Eret# jump to user mode

5.5 Physical address space distribution
The address space of loongson 3 is uniformly distributed to each node according to the high position of the

address.The height of the 48-bit address is 4 [47:44] corresponding to the empty address

98

Each node has a fixed 44-bit address space.The 44-bit address space within the node is further divided

For 8 41-bit address Spaces, the use of 41-bit Spaces is mainly due to the fact that one port may be connected to two
HT controllers for each

HT needs a 40-bit address space.

88

6 Processor exception

This chapter describes the core exceptions of the loongson GS464 processor, including the

generation and return of exceptions, the location of exception vectors, and the types of

exceptions supported.For each type of exception supported, the description includes the reason

for the exception, the handling, and the service.

6.1 Exceptions are generated and returned

When the processor starts processing an exception, the EXL bit of the status register is

set to 1, which means the system is running in kernel mode.After the appropriate field state is

saved, the exception handler typically sets the KSU field of the status register to kernel mode

and returns the EXL position to 0.When the field state is restored and reexecuted, the handler

restores the KSU field to its previous value, with the EXL bit of 1.

Returning from the exception also puts the EXL position at 0.

6.2 Exception vector position

The vector address for cold reset, soft reset, and unmasked interrupt (NMI) exceptions is

the dedicated reset exception vector address 0xffffffffffbfc00000, which is neither accessed

through Cache nor mapped.In addition, EJTAG debug interrupts entry

0xffffffffffffffffff200200 and 0xFFFFFFFFFF200200, respectively, according to whether the

ProbeTrap bit in its control register is 0 or 1.All other exception vector addresses take the form

of a base address plus a vector offset.When the BEV bit in the state register is 0, the user can

define the base address of the exception vector, as shown in table 6-1.

Table 6-1 base addresses of exception vectors

exce
ption

BEV =
0

BEV =
1

Reset, Soft Reset, NMI 0 XFFFFFFFF BFC00000

EJTAG Debug (ProbEn = 0) 0 XFFFFFFFF BFC00480

EJTAG Debug (ProbEn = 1) 0 XFFFFFFFF FF200200

Cache Error 0 XFFFFFFFF | | EBase31.. 30 | |

1 | |

EBase28.. 12 | | 0 x000

0 XFFFFFFFF BFC00300

Others 0 XFFFFFFFF | | EBase31.. 12 | |

0 x000

0 XFFFFFFFF BFC00200

89

Table 6-2 lists the offsets of the exception vectors in the core of the loongson GS464 processor.

Table 6-2 exception vector offsets

exce
ption

Exception
vector

migration

TLB Refill, EXL = 0 0 x000

XTLB Refill, EXL = 0 0 x080

Cache error 0 x100

Other Shared exceptions 0 x180

The interrupt and
CauseIV = 1

0 x200

Reset, Soft Reset, NMI None (using base
address)

For external interrupts (including clock and performance counter interrupts), the

traditional approach is to use a common exception entry, which is distributed to the

corresponding service by the software.The godson GS464 processor core support vector

Interrupt mode (Vectored Interrupt), the model of the register by the Cause IV a choice.In

vector interrupt mode, interrupt priority is reduced from IP7 to IP0 and there are special

exception entries. The VS field of the IntCtl register controls the space occupied by these

exception handling codes, and the entry offset corresponding to each interrupt can be

calculated using the following formula (where the vector number starts from zero) :

Vector interrupt offset = 0x200 + vector number * IntCtlVS

6.3 Exception priority

The rest of this chapter covers the exceptions in the order of priority given in table 6-3 (for

specific exceptions, such as TLB exceptions and directive/data exceptions, grouped together

for convenience).When an instruction simultaneously generates more than one exception, only

the highest priority exception is reported to the processor.Some exceptions are not generated by

the instruction being executed at the time, and some may be deferred.See this chapter's separate

introduction to each exception for more details.

Table 6-3 priority of exceptions

Exception
priority order

Cold reset (highest priority)

90

Unmasked interrupt (NMI)

Wrong address -- pointing

TLB refill - take the finger

TLB is invalid -- take a finger

Cache error - take a pointer

Bus error - take a finger

Integer overflows, traps, system calls, breakpoints, reserved instructions,
coprocessors unavailable, floating point exceptions

EJTAG interrupt

Address error - data access

TLB refilling - data access

TLB invalid - data access

TLB modification - write data

EJTAG data breakpoint

Cache error - data access

Bus error - data access

Interrupts (lowest priority)

In general, the exceptions described in the following sections are handled first by the

hardware and then by the software.

6.4 Cold reset exception

why

A cold reset exception occurs when the system is first powered on or cold reset. This exception cannot be
blocked.
To deal with

The CPU provides a special interrupt vector for this exception:

 Located at 0xBFC0 0000 in 32-bit mode

 Located at 0xFFFF FFFF bfc0000 in 64-bit mode
Cold reset vector addresses belong to the CPU address space that does not require address

mapping and does not access data through the Cache, so you do not need to initialize TLB or

Cache to handle this exception.This also means that the processor can fetch and execute

instructions even if the Cache and TLB are in an indeterminate state.

When an exception occurs, the contents of all registers in the CPU are uncertain, except

for the following register fields:

91

 The initial value of the Status register is 0x30c000e4, the SR bit is cleared to 0, and the

ERL and BEV bits are set to 1.

 The initial value of the Config register is 0x80034482.

 The Random register is initialized to its maximum value.

 The Wired register is initialized to 0.

 The ErroEPC register is initialized to the value of PC.
 The Event bit of the Performance Count register is initialized to 0.

 All breakpoints and external interrupts are cleared.

service

Cold reset exception services include:

 Initializes all processor registers, coprocessors, caches, and storage systems.

 Perform diagnostic tests.

 Bootstrap the bootstrap operating system.

6.5 NMI exception

why

NMIn for low yields an NMI exception.This exception cannot be blocked.

`

When an NMI exception occurs, the SR bit in the status register is set to 1 to distinguish

cold reset.

The NMI exception can only be extracted at the edge of an instruction. It does not discard

any machine state, but rather retains the state of the processor for diagnosis. The Cause register

contents remain the same while the system jumps to the beginning of the NMI exception

handler.

The NMI exception preserves all register values except the following registers:

 The Er rorEPC reg i s t e r con ta in ing the PC va lue .

 Status register ERL bit set to 1.

 Soft reset or NMI set to 1, cold reset set to 0 status register SR bit.

 The status register BEV bit is set to 1.

 The PC register is reset to 0xFFFF FFFF bfc0000

service

92

The NMI exception can be used in situations other than "reset the processor while

retaining the Cache and memory contents." For example, when a power failure is detected, the

system can be shut down immediately and controllably through the NMI exception.

Because an NMI exception occurs in another error exception, it is usually not possible to

continue executing the program after returning from the exception.

93

6.6 Address error exception

why

The address error exception occurs when:

 Reference invalid address space.

 Refer to the superuser address space in user mode.

 Reference the kernel address space in user or superuser mode.

 Take (Load) or Store (Store) a double word, but the double word does not align with the double word
boundary.

 Fetch (Load, Fetch) or Store a word, but the word does not align with the boundary of the word.

 Take or save a half word, but the half word does not

align to the edge of the half word.This exception cannot be

blocked.

To deal with

The common exception vector is used for address error exceptions. The ExcCode field

value of the Cause register is set to a ADEL or ADES encoding value, along with the EPC

register and the BD bit of the Cause register, to indicate the instruction causing the exception

and whether the exception is caused by an instruction reference, fetch or save operation

instruction.

When an exception occurs, the BadVAddr register holds incorrectly aligned virtual

addresses, or virtual addresses of the protected address space.

If the instruction causing the exception is not an instruction in the branch delay slot, the

EPC register holds the address of the instruction.Otherwise, the EPC register holds the address

of the previous branch instruction, and the BD bit of the Cause register is set to 1.

service

At this point, the running process causing the exception will receive a UNIX

SIGSEGV(segment violation) signal, an error that is usually fatal to the process.

6.7 TLB exception

Three TLB exceptions can occur:

 When no item in TLB matches the address of the mapped address space to be referenced,
the TLB rewrites the exception.

 A TLB invalidation exception occurs when a virtual address reference matches an item

94

in a TLB, but that item is marked invalid.

 When the virtual address reference for a write memory operation matches an item in TLB that is
not marked as "dirty.

A TLB modification exception occurs.These

TLB exceptions are covered in the following three

sections.

Note: TLB refilling vector selection is described earlier in this chapter. See section 6.8 "TLB refilling
exception" for details.

6.8 TLB refills the exception

why

When no item in TLB matches a reference address in the mapped address space, a TLB

refill exception occurs, which is unmasked.

To deal with

For this exception, the MIPS architecture has two special exception vectors: one for the

32-bit address space and one for the 64-bit address space.The exception vector is offset by

0x000 when the reference address is in the 32-bit address space, and by 0x080 when the

reference address is in the 64-bit address space.

When the EXL bit in the status register is set to 0, all address references use these

exception vectors.This exception sets the value of the ExcCode field in the Cause register to

be a TLBL or TLBS encoding.This code, along with the EPC register and BD of Cause register,

indicates the instruction causing the exception and whether the exception is caused by an

instruction reference, fetch operation instruction, or save operation instruction.

When this exception occurs, the BadVAddr, Context, XContext, and EntryHi registers

hold the virtual address where the address translation failed. The EntryHi register also holds

the ASID if the conversion fails. The Random register usually holds the legal location for

the TLB item to be replaced. The contents of the EntryLo register are uncertain. If the

instruction that caused the exception is not in the branch delay slot, the EPC register holds the

address of the instruction that caused the exception.Otherwise, the EPC register holds the

address of the previous branch instruction, and the BD bit of the Cause register is set to 1.

service

To serve this exception, the contents of the Contex or XContext register are used as virtual

addresses to obtain certain memory locations that contain a pair of physical page addresses

95

and access control bits for TLB entries.This TLB pair is put into the EntryLo0/EntryLo1

register; Registers EntryHi and EntryLo are written to TLB.

The virtual address used to obtain the physical address and access control information

may be on a page that does not reside in the TLB.If this occurs, the TLB resend handler allows

another TLB to resend the exception to resolve it.Since the EXL bit of the Status register is

set to 1, the second TLB refold exception is passed with the common exception vector.

96

6.9 TLB invalid exception

why

A TLB invalid exception occurs when a virtual address reference matches a TLB entry

that is marked as invalid (the TLB valid bits are cleared).This exception is unmasked.

To deal with

The common exception vector is used to handle this exception. The ExcCode field value

of the Cause register is set to TLBL or TLBS, along with the EPC register and the BD bit of

the Cause register, to indicate the instruction causing the exception and whether the exception

is caused by an instruction reference, fetch operation instruction, or save operation instruction.

When this exception occurs, the BadVAddr, Context, XContext, and EntryHi registers

hold the virtual address where the address translation failed. The EntryHi register also holds

the ASID if the conversion fails. The Random register usually holds the legal location for

the TLB item to be replaced. The contents of the EntryLo register are uncertain.

If the instruction causing the exception is not an instruction in the branch delay slot, the

EPC register holds the address of the instruction.Otherwise, the EPC register holds the address

of the previous branch instruction, and the BD bit of the Cause register is set to 1.

service

The TLB entry is marked invalid when one of the following occurs:

 The virtual address does not exist

 Virtual addresses exist, but not in main memory (missing pages)

 Invoking this page raises a trap (for example, maintaining reference bits)
After the cause of the TLB invalid exception is served, the TLB entry is located through

the TLBP instruction (which probes the TLB to find a match), and the TLB entry is replaced

with one that has a valid tag bit.

6.10 TLB modification is an exception

why

The TLB modification exception occurs when the virtual address reference for the write

memory operation matches an item in the TLB, but the item is not marked as "dirty" and

therefore cannot be written.This exception cannot be blocked.

97

To deal with

The common exception vector is used to handle this exception, and the ExcCode field

value in the Cause register is set to

The MOD.

When this exception occurs, the BadVAddr, Context, XContext, and EntryHi registers

hold the virtual address where the address translation failed. The EntryHi register also holds

the ASID if the conversion fails. The contents of the EntryLo register are uncertain.

If the instruction causing the exception is not an instruction in the branch delay slot, the

EPC register holds the address of the instruction.Otherwise, the EPC register holds the address

of the previous branch instruction, and the BD bit of the Cause register is set to 1.

service

The kernel USES the failed virtual address or virtual page number to identify the

appropriate access control information.The identified page may or may not allow write

access;If write access is not allowed, a write protection violation occurs.

If write access is allowed, the kernel marks the page as writable in its own data structure.

The TLBP instruction places the Index of the TLB item that must be changed into the Index

register. A word containing the physical page and the access control bit (the D bit is set) is

pulled into the EntryLo register, and the EntryHi and EntryLo registers are then written into

the TLB.

6.11 Cache error exception

why

An exception to the Cache error occurs when an internal Cache check error occurs when

the processor fetches a pointer or accesses memory.This exception cannot be blocked.

To deal with

The Cache error exception entry with an offset of 0x100 is used to handle the Cache error

exception.At this point, the exception entry base is located in the address segment that is not

in the Cache.The ExcCode field value of Cause register is set to CacheErr, along with the EPC

register and BD bit of Cause register, to indicate the instruction causing the exception and

whether the exception is caused by an instruction reference or an access operation

instruction.The CacheErr register records the error type and the position in the group-linked

Cache.The CacheErr1 register records the error instruction virtual address or memory physical

98

address, as described in section 3.30 of the CacheErr and CacheErr1 registers.

If the instruction causing the exception is not an instruction in the branch delay slot, the

EPC register holds the address of the instruction.Otherwise, the EPC register holds the address

of the previous branch instruction, and the BD bit of the Cause register is set to 1.

service

The loongson GS464 processor checks Cache errors to achieve hardware self-correction,

and applications can simply return directly from the exception.

If there is an error in the instruction Cache, the error Cache line will be invalid.If there is

an error in the data Cache and there is only one error, the error data will be corrected

automatically.If there is an error in the data Cache and there are two errors, the operating

system should determine the processing method based on the location of the error data block.

6.12 Bus error exception

why

The bus error exception occurs when the processor receives an external ERR completion

reply signal when it reads or updates a data block or makes a double-word/single-word/half-

word read request.This exception cannot be blocked.

To deal with

Common interrupt vectors are used to handle bus error exceptions. The ExcCode field

value of the Cause register is set to IBE or DBE, along with the EPC register and the BD bit

of the Cause register, to indicate the instruction causing the exception and whether the

exception is caused by an instruction reference, fetch or save operation instruction.

If the instruction causing the exception is not an instruction in the branch delay slot, the EPC register

holds the address of the instruction.Otherwise, the EPC register holds the address of the previous branch

instruction, and the BD bit of the Cause register is set to 1.

service

The physical address where the error occurred can be calculated from the information in the CP0 register.

I f the va lue o f the E xcCode f ie ld in the Cause reg is te r i s se t to IBE

encod ing (r epresen t ing fe tch in s t ruc t ion s) , then the in s t ruc t ion v i r tua l

addre ss c aus ing the excep t ion i s s to red in the EPC reg i s t e r (i f t he BD b i t o f

the Cause reg is te r i s s e t to 1 , the v i r tua l add res s o f t he in s t ruc t ion i s t he EPC

99

r eg is te r con ten ts p lu s 4) .

If the ExcCode field value in the Cause register is set to DBE encoding (representing a

read or store reference), then the instruction virtual address that causes the exception to occur

is stored in the EPC register (if the BD bit of the Cause register is set to 1, the virtual address

of the instruction is the EPC register contents plus 4).

The virtual address to read and store the reference can then be obtained by interpreting

the instruction. And the physical address can go through

The TLBP instruction and the reading of the EntryLo register contents calculate the physical

page number to obtain. The running process that causes the exception to occur receives a

UNIX SIGBUS signal, which is usually fatal to the process.

6.13 The exception is integer overflow

why

The integer overflow exception occurs when an ADD, ADDI, SUB, DADD, DADDI, or

DSUB instruction is executed, resulting in an overflow of the resulting complement.This

exception is unmasked.

To deal with

The common exception vector is used to process this exception, and the ExcCode field of

the Cause register is set to the OV encoding value.

If the instruction causing the exception is not an instruction in the branch delay slot, the

EPC register holds the address of the instruction.Otherwise, the EPC register holds the address

of the previous branch instruction, and the BD bit of the Cause register is set to 1.

service

The executing process that caused the exception to occur receives a UNIX

SIGFPE/FPE_INTOVE_TRAP(floating point exception/integer overflow) signal.This error is

usually fatal to the process.

6.14 Trap exceptions

why

When TGE, gue, TLT, TLTU, TEQ, TNE, TGEI, TGEUI, TLTI, TLTUI, TEQI,

The trap exception occurs when the TNEI instruction is executed and the condition result

is true. This exception is unmasked.To deal with

100

The common exception vector is used to process this exception, and the ExcCode field of

the Cause register is set to the TR encoding value.If the instruction that raised the exception

is not an instruction in the branch delay slot, the EPC register holds the instruction

Address; Otherwise, the EPC register holds the address of the previous branch instruction,

and the BD bit of the Cause register is set to

serv

ice

The executing process causing the exception to occur receives a UNIX

SIGFPE/FPE_INTOVE_TRAP (float)

Exception/integer overflow) signal.This error is usually fatal to the process.

6.15 System call exception

why

The system call exception occurs when the SYSCALL directive is

executed.This exception is unmasked.To deal with

The common exception vector is used to process this exception, and the ExcCode field of

the Cause register is set to the SYS encoding value.

If the SYSCALL instruction is not in the branch delay slot, the EPC register holds the

address of the instruction.Otherwise, save the address of the previous branch instruction.

If the SYSCALL instruction is in the delay slot, the BD bit in the status register is set to

1, otherwise the bit is cleared

Service

When this exception occurs, control is transferred to the appropriate system routine.

Further system call differentiation can be analyzed

The Code field of the SYSCALL instruction (bit 25:6), and the contents of the instruction

loaded into the address stored in the EPC register.In order to resume the execution of the

process, the contents of the EPC register must be changed so that the SYSCALL instruction

does not occur again

Be performed; This can be done by adding 4 to the value of the EPC register before

returning.

101

If the SYSCALL instruction is in the branch delay slot, a more complex algorithm is

required, which is beyond the scope of this section.

6.16 Breakpoint exception

why

A breakpoint exception occurs when a BREAK instruction is

executed.This exception is unmasked.

To deal with

The common exception vector is used to process this exception, and the

ExcCode field of the Cause register is set to the BP encoding value.If the

BREAK instruction is not in the branch delay slot, the EPC register holds the

address of the instruction.Otherwise,

Save the address of the previous branch instruction.

If the BREAK instruction is in the delay slot, the BD bit in the status

register is set to 1, otherwise it clears to 0.

service

When this exception occurs, control is transferred to the appropriate

system routine. Further differentiation can be performed by analyzing the

Code field of the BREAK instruction (bit 25:6), and the contents of the

instruction loaded into the address stored in the EPC register.If the

instruction is in the branch delay slot, the contents of the EPC register must

be added 4 to locate the instruction.

In order to resume the execution of the process, the contents of the EPC

register must be changed so that the BREAK instruction will not be executed

again.This can be done by adding 4 to the value of the EPC register before

returning.

If the BREAK instruction is in the branch delay slot, the branch

instruction needs to be interpreted in order to resume the execution of the

102

process.

6.17 Exception to reserved instruction

why

The exception to the reserved instruction occurs when an attempt is

made to execute an instruction not defined in MIPS64 Release2 and not

customized by loongson.This exception is unmasked.

To deal with

The common exception vector is used to process this exception, and the

ExcCode field of the Cause register is set to the RI encoding value.If the

reserved instruction instruction is not in the branch delay slot, the EPC

register holds the address of this instruction.Otherwise,

Save the previous branch instruction address.

service

At this point, no instructions are interpreted and executed. UNIX

SIGILL/ILL_RESOP_FAULT(illegal instruction/reserved operation error) is

signaled to the executing process that caused the exception to occur.This

error is usually fatal to the process.

6.18 An exception is not available for the coprocessor

why

An attempt to execute any of the following coprocessor instructions will

result in a coprocessor unavailable exception:

The corresponding coprocessor unit (CP1 or CP2) is not marked as

available.

The CP0 unit is not marked as available, and the process executes CP0

103

in user or superuser mode

The instructions.
This exception is unmasked.

Loongson custom extension instruction of the coprocessor is not available exception trigger conditions are as
follows:

 The custom extended access instruction (table 2-15), the custom extended 64-bit

multimedia access instruction (table 2-18), and the custom extended floating point access instruction

(table 7-5) trigger coprocessor unavailability exceptions when CP2 is not marked as available.

 Custom extended floating point access instruction (table 7-5) triggers a coprocessor

unavailable exception when CP1 is not marked as available.

It is important to note that the three custom extended floating-point format conversion

instructions, CVT.D. del.d, and CVT. Ud.d, do not trigger a coprocessor unavailability exception even

if CP1 is not marked as available.

To deal with

The common exception vector is used to process this exception, and the

ExcCode field of the Cause register is set to the cpu-encoded value. The

Cause register's CE field indicates which of the four coprocessors is

referenced. If the instruction is not in the branch delay slot, the EPC register

holds the address of the non-usable coprocessor instruction.Otherwise, the

EPC register holds the address of the previous branch instruction.

service

There are several scenarios as follows:

If the process is authorized to access the coprocessor, the coprocessor is

marked as available, and the corresponding user state is restored for the

coprocessor to execute.

If the process is authorized to access the coprocessor, but the

coprocessor does not exist or has a fault, the coprocessor instruction needs to

be interpreted/emulated.

104

If the BD bit in the Cause register is set, the branch instruction must be

interpreted.The coprocessor instructions are then simulated.The coprocessor

instruction that skipped the exception continues when the exception returns.

If the process is not authorized to access the coprocessor, the executing

process receives a UNIX SIGILL/ILL_PRIVIN_FAULT signal.This mistake

is usually fatal.

6.19 Floating-point exception

why

Floating point coprocessors use floating point exceptions. This

exception is unmasked.

To deal with

The common exception vector is used to process this exception, and the

ExcCode field of the Cause register is set to the FPE encoding value.

The contents of the floating point control/status register indicate the

reason for this exception.

service

This exception can be cleared by clearing the appropriate bit in the

floating point/status register.

6.20 EJTAG exception

EJTAG exceptions are triggered when certain ejtag-related conditions

are met.See chapter X for details

6.21 Interrupt exception

why

An interrupt exception occurs when one of the eight interrupt conditions

is triggered. The importance of these interrupts depends on the particular

system implementation.

105

Any of the eight interrupts can be masked by clearing the corresponding

bit in the interrupt-mask (IM) field in the state register, and all eight

interrupts can be masked at once by clearing the IE bit in the state register.

To deal with

The Cause register's ExcCode field is set to an INT encoding value.

Depending on the current configuration, the processor USES traditional

common exception vector processing or USES the vector exception pattern to

select the entry corresponding to the highest priority interrupt number.

The IP domain in the Cause register indicates the current interrupt

request. More than one interrupt bit may be set at the same time (if the

interrupt is triggered and cancelled before the register is read, no bit may

even be set).

IP[7] interrupts have three sources, except for the break line 5, which is

generated when the contents of the Count register are equal to the contents of

the Compare register or when the CP0 performance counter overflows.Clock

interrupts and performance counter overflow interrupts are indicated by TI

and PCI bits in the Cause register.

If the vector interrupt pattern is not used, the software needs to query

every possible interrupt source to determine the cause of the interrupt (an

interrupt may have multiple sources at the same time).

service

If the interrupt is caused by one of the two software exceptions, set the

corresponding bit in the Cause register, IP[1:

0], is 0 to clear the interrupt condition.

Software interrupts are imprecise. Once a software interrupt is triggered,

the program may continue to execute several instructions before the

exception is processed.Clearing of timer interrupts is accomplished by

writing a value to the Compare register.The elimination of the performance

106

counter interrupt is the overflow bit to the counter, namely 31, writing 0 to

achieve.

Cold reset and soft reset will clear all outstanding external interrupt

requests, IP[2] to IP[6].

If the interrupt is hardware-generated, the interrupt condition can be

cleared by undoing the condition that caused the triggered interrupt pin.

107

7 Floating point coprocessor

This chapter describes the features of the Floting Point Unit (FPU),

including the programming model, instruction set and instruction format,

instruction pipeline, and exceptions.The loongson 3A1000 floating point

coprocessor and its related system software are fully compliant with the

ANSI/IEEE 754-1985 binary floating point computing standard.

7.1 An overview of the

As the CPU's Coprocessor, FPU, known as Coprocessor 1, performs

floating point arithmetic operations by extending the CPU's instruction set.

FPU consists of the following two functional units:

 FALU1 unit

 FALU2 unit
FALU1 module can be performed in addition to the floating point to

fetch and floating-point and fixed-point data transfer all of the floating-point

operations, including floating add (subtract) method, the floating-point

multiplication, floating point multiply add (subtract), floating-point division,

floating point open square root, floating down, floating point open after the

root pour, floating-point and fixed-point conversion, floating point precision

conversion, floating point comparison, judgment and other simple logic. In

addition, the FALU1 module performs SIMD media operations through the

extension and reuse of the FMT domain in the instruction encoding.

FALU2 performs floating-point multiplication and addition operations

(computable floating-point multiplication, addition, and floating-point

multiplication and addition instructions), as well as media instruction

operations.Meanwhile, loongson 3A1000's FPU supports the execution of

MIPS64 instruction set of Paired - Single (PS) floating point

instructions.Figure 7-1 illustrates the organizational structure of the

108

functional units in the loongson 3A1000 architecture.

109

Figure 7-1 organization of functional units in loongson 3A1000 architecture

Floating point queue can emit 1 instruction to FALU1 cell and 1

instruction to FALU2 cell per clock cycle.The floating point register file

provides three dedicated read ports for each FALU1 cell and one dedicated

write port for each FALU1 cell.

7.2 FPU register

This section describes the FPU register group and their data organization

structure.The loongson 3A1000's FPU register is compatible with the

MIPS64's FPU register. The FPU register of MIPS64 includes a floating

point register and a floating point control register. Floating point control

registers include FIR (no. 1), FCSR (no. 31), FCCR (no. 25), FEXR (no. 26),

FENR

110

(28th) etc.

7.2.1 Floating point register

The floating point register of loongson 3A1000 follows the usage of

R10000, which is slightly different from MIPS64.Mail in Status control

111

When the FR bit of the memory is 1, there are 32 64-bit floating point

registers, as shown in the figure below.In the Status control register

With FR bit 0, R10000 has only 16 32-bit or 64-bit floating point

registers, while MIPS64 has 32 32-bit registers

Bit floating point registers or 16 64 bit floating point registers.

630

630

 f1 f0

 f3 f2

 f5 f4

 f7 f6

 f9 f8

 f11 f10

 f13 F12
.

 f15 f14

 F-17 thunder f16

 f19 f-
18s

 f21 f20

 mo
vie
ma
ker

ma
kin
g

 f25 F24
,

 f27 f26

 f29 f28

 f31 f30

Figure 7-2 floating point register format

7.2.2 FIR register (CP1, 0)

112

FIR is a 32-bit read-only register, which contains floating point unit

functions, such as processor ID, revision version number and other

information. The FIR in loongson 3A1000 has an initial value of

0x00770501.

Figure 7-3 shows the format of the FIR register, and table 7-1 describes

the domain of the register.

113

31 28 27 24 23 22 21 20 19 18 17 16 15 8 7

1 1 1 1 1 1 1 1

0 Impl 0 F64 L W. The
3 d

PS D s. ProcessorID Revision

FIG. 7-3 FIR register

Table 7-1 FIR register fields

The domain describe

0 Retained. You must press 0 to write and
return 0 on read.

Impl Implement related

F64

Whether the floating point data path is
64 bits

0 to 32

1-64

L

Whether long word (64 bit) fixed-point
data types are implemented

0 - unrealized

1 - have been implemented

W.

Whether the word (32-bit) fixed-point
data type is implemented

0 - unrealized

1 - have been implemented

The 3 d

Whether MIPS-3D ASE is implemented

0 - unrealized

1 - have been implemented

PS

Whether floating point is implemented
for data types

0 - unrealized

1 - have been implemented

D

Whether the double-precision floating
point data type is implemented

0 - unrealized

1 - have been implemented

114

The domain describe

s.

Whether a single-precision floating point
data type is implemented

0 - unrealized

1 - have been implemented

ProcessorID Floating point processor identifier

Revision The revision version number of the
floating point unit

7.2.3 FCSR register (CP1, 31)

The FCSR register is used to control the operation of floating point units and to represent

some state. The initial value of FCSR in GS464 is 0x00000F80. The format of the FCSR register

is shown in figure 7-4, and the field of the FCSR register is described in table 7-2.Among them,

E, V, Z, O, U and I respectively represent unrealized operation, invalid operation, division by

zero, overflow, underflow and imprecision.

The
FCC

Th
e
FS

The
FCC

Impl 0 Cause Enables Flags The
RM

7, 6, 5, 4, 3, 2, 1105 E V Z O U i. V Z O U i. V Z O U i. 2

Figure 7-4 FCSR register

Table 7-2 FCSR register fields

The domain describ
e

0 Retained. You must press 0 to write and return 0 on read.

The FCC Floating point condition code. Records floating-point comparison results for conditional
jumps or transitions.

The FS It goes to zero.When this is set, the result of the abnormal operation will be set to 0,
instead of producing an exception.

Impl

For implementation correlation, GS464 USES FSCR[21] as top_mode, a bit that indicates when

decoding whether to rename floating point register Numbers using the X86

TOP register.

Cause When an exception to a floating point operation is generated, the corresponding bit is
set.

Enables Whether to allow the corresponding conditions to produce exceptions.

Flags Whether an IEEE floating point exception is generated.(for example, not opening the
corresponding bit in Enables you to view this field)

3125 2423 2221 20 18 1712 117 62 1 0

115

The RM

Whether the double-precision floating point data type is implemented

0 - unrealized

1 - have been implemented

116

Control/status register condition (CC0) bit

When a floating point comparison occurs, the result is stored in the CC0

bit, the conditional bit.If the comparison result is true, CC0 bit is set to

1;And the opposite is zero. The CC0 bit can only be modified by the floating

point comparison instruction and the CTC1 instruction.

The control/status register Causes the domain

The control/status register bits 17:12 are the Causes field, and these bits

reflect the results of the most recent instruction execution. The Causes

domain is a logical extension of the Cause register of coprocessor 0. These

bits indicate the exception caused by the last floating point operation and

generate an interrupt or exception if the corresponding Enable bit (s) is set. If

more than one exception is generated in an instruction, each corresponding

exception causes the bit to be set.

The Causes domain can be overwritten by every floating point operation

instruction (not including Load, Store, Move). Among them, if the software

simulation is needed to complete, the unrealized operation bit (E) of this

operation is set to 1, otherwise, it remains at 0.The other bits are either 1 or 0

in accordance with the IEEE754 criterion to see if corresponding exceptions

are generated.

When a floating point exception occurs, no results will be stored, and

the only state affected is the Causes domain.

Control/status register Enables the field

Any time the Cause bit and the corresponding Enable bit are both 1, a

floating point exception is generated.If a floating point operation is set to a

Cause bit that is allowed to be activated (the corresponding Enable bit is 1),

the processor immediately generates an exception, just as it does with the

CTC1 instruction setting both the Cause bit and the Enable bit to 1.

There is no corresponding enabling bit for an unimplemented operation

(E), which always generates a floating point exception if an unimplemented

117

operation is set.

Before returning from a floating point exception, the software must first

clear the activated Cause bit with a CTC1 instruction to prevent interrupted

repeat execution.Therefore, a program running in user mode will never

observe that the enabled Cause bit has a value of 1;If the user-state handler

needs to get this information, the contents of the Cause bit must be passed

somewhere other than in the status register.

If the floating-point operation only sets the Cause bit that is not enabled

(the corresponding enable bit is 0), no exception occurs, and the default

result defined by the IEEE754 standard is written back.In this case, the

exception caused by the previous floating point instruction can be determined

by reading the values of the Causes domain.

Control/status register Flags field
The flag bit is cumulative, indicating that an exception has occurred

since it was explicitly reset last time.If an IEEE754 exception is generated,

the corresponding Flag bits are set to 1, otherwise they remain unchanged, so

these bits will never be cleared for floating point operations.However, we can

set or clear the Flag bits by the CTC1 control instruction by writing a new

value into the status register.

118

31

24 7 6 5 4 3 2 1 0

When a floating point exception occurs, the Flag bit is not set by the

hardware;It is the responsibility of the floating-point exception handler to set

these bits before invoking the user program.

The rounding mode (RM) field of the control/status register

The zeroth and first bits of the control/status register make up the

rounding mode (RM) field.As shown in table 7-3, FPU rounds all floating

point operations according to the rounding method specified by these bits.

Table 7-3 rounding mode bit decoding

Rounding
mode

RM (1-0)

mnemo
nics

descr
ibe

0 RN Round the result to the direction closest to the number that can be represented. When the two

closest to the number that can be represented are equally close to the result,

round to the direction closest to the number that has the lowest position of

0.

1 RZ Rounding to zero: rounds the result to the number closest to it and no greater than it in
absolute value.

2 The
RP

Rounding to positive infinity: rounding the result to the number closest to it and not
less than it

3 The
RM

Rounding to negative infinity: rounding the result to the number closest to it and not
greater than it

7.2.4 FCCR register (CP1, 25)

 The FCCR register is another way to access the FCC field. Its content

is exactly the same as the FCC bit in FCSR, except that the FCC bit in this

register is continuous. Figure 7-5 shows the format of the FCCR register.

Figure 7-5 FCCR register

7.2.5 FEXR register (CP1, 26)

FCC

119

31 12 11 7 6 3 2 1

The FEXR register is another way to access the Cause and Flags fields,

which have exactly the same contents as the corresponding fields in FCSR.

Figure 7-6 shows the format of the FEXR register.

3118

1712

117

62

1 0

 0 Cause 0 Flags 0

 E V Z O U i. V Z O U i.

Figure 7-6. FEXR register

7.2.6 FENR register (CP1, 28)

The FENR register is another way to access the Enable, FS, and RM

fields, and its content is exactly the same as the corresponding fields in

FCSR. Figure 7-7 shows the format of the FENR register.

0 Enables 0 The
FS

The
RM

 V Z O U i.

Figure 7-7. FENR register

7.3 Floating-point instructions

7.3.1 MIPS64 compatible floating point instruction list

GS464 implements all data types in the FPU part of MIPS64, including

S, D, W, L, and optional PS. Table 7-4 lists the FPU instructions for the

MIPS64 part of GS464.

Table 7-4 FPU instruction set of MIPS64

OpCode The MIPS ISA

120

Description

Arithmeti
c

instructio
ns

ABS. FMT The absolute
value

MIPS32

ADD the
FMT

add MIPS32

DIV. FMT division MIPS32

MADD.
FMT

By adding MIPS64

MSUB. FMT By reducing MIPS64

The
MUL.
FMT

The
multiplication

MIPS32

NEG. FMT complementation MIPS32

NMADD. FMT Multiply and add
to get the inverse

MIPS64

NMSUB. FMT Multiply and
subtract to get the

inverse

MIPS64

RECIP. FMT For the bottom MIPS64

RSQRT. FMT Take the inverse
of the square root

MIPS64

SQRT. FMT The square root MIPS32

SUB.
FMT

subtraction MIPS32

Branch jump
instruction

BC1F Floating point
false time jump

MIPS32

BC1FL Likely jump when floating point false MIPS32

BC1T Floating-point
true time jump

MIPS32

BC1TL Likely jump when floating point true MIPS32

More
instructions

Arthur c. ond. FMT Compare floating point value juxtaposes
flag bits

MIPS32

Transformatio
n instruction

CEIL. L.f mt Convert to a 64-bit fixed point and round up MIPS64

CEIL. W.f mt Convert to a 32-bit fixed point, and round up MIPS64

The CVT
transmission. D.f mt

Floating-point or fixed-point conversion to
double-precision floating-point

MIPS32

The CVT
transmission. L.f mt

Converts a floating point value to a 64-
bit fixed point

MIPS64

121

The CVT
transmission. PS. S

Converts two floating point values to
floating point pairs

MIPS64

The CVT
transmission.
Supachai
panitchpakdi L

Converts the low position of a floating point
pair to a single precision floating point

MIPS64

The CVT
transmission.
Supachai
panitchpakdi L

Converts the high point of a floating point
pair to a single precision floating point

MIPS64

The CVT
transmission. S. mt

Floating-point or fixed-point conversion to
single-precision floating-point

MIPS32

The CVT
transmission. W.f mt

Converts a floating point value to a 32-
bit fixed point

MIPS32

FLOOR. L.f mt Convert to 64 bit fixed point, round down MIPS64

FLOOR. W.f mt Convert to 32-bit fixed point, round down MIPS64

PS PLL. Merge two floating point pairs into a new
floating point pair

MIPS64

PLU. PS Merge the low and high values of two floating
point pairs into the new floating point pair

MIPS64

PUL. PS Merge the high and low values of two floating
point pairs into the new floating point pair

MIPS64

PUU. PS Merge two floating point pairs into a new
floating point pair

MIPS64

122

ROUND. L.f mt Round the floating point number to a 64-bit fixed
point

MIPS64

ROUND. W.f
mt

Round the floating point to a 32-bit fixed point MIPS32

TRUNC. L.f mt Rounds a floating point to a 64-bit point in the
direction of a small absolute value

MIPS64

TRUNC. W.f mt Rounds a floating point to a 32-bit point in the
direction of a small absolute value

MIPS32

To fetch
instruction

LDC1 Access binary words from memory MIPS32

LDXC1 To access binary words from memory by index MIPS64

LUXC1 Access doublets from memory by unaligned
index

MIPS64

LWC1 Access a word from memory MIPS32

LWXC1 Access the word from memory by index MIPS64

SDC1 Save the double word into memory MIPS32

SDXC1 Save double word to memory by index MIPS64

SUXC1 Save the double word to memory according to the
unaligned index

MIPS64

SWC1 Save the word into memory MIPS32

SWXC1 Save the word to memory by index MIPS64

MOVE
instruction

CFC1 Read floating-point control register to GPR MIPS32

CTC1 Write floating-point control register to GPR MIPS32

DMFC1 Copy the word from FPR to GPR MIPS64

DMTC1 Copy the word from GPR to FPR MIPS64

MFC1 Copy the low word from FPR to GPR MIPS32

MFHC1 Copy the high word from FPR to GPR MIPS32 R2

ALNV. PS Variable floating point alignment MIPS64

MOV. FMT Copy FPR MIPS32

MOVF. FMT Copy FPR when floating point false MIPS32

MOVN. FMT Copy FPR when GPR is not 0 MIPS32

MOVT. FMT Copy FPR when floating point is true MIPS32

MOVZ. FMT Copy FPR when GPR is 0 MIPS32

MTC1 Copy the low word from GPR to FPR MIPS32

MTHC1 Copy the high word from GPR to FPR MIPS32 R2

123

7.3.2 MIPS64 compatible floating point instruction implementation

GS464 is compatible with MIPS64 Release 2, and functionally

implements all FPU instructions specified in the MIPS64 architecture.

However, some instructions have subtle but important differences in

implementation that do not affect compatibility. The following two points

deserve programmers' attention.

Multiply plus, multiply minus instructions. The execution of MADD.

FMT, MSUB. FMT, NMADD. FMT, NMSUB. FMT this four set of

instructions, GS464 computing results with MIPS64 processor is slightly

different, this is because the GS464 when doing multiplication and

operations only in the final results do rounding precision (so-called fused -

mulitply - add), and MIPS64 processor after to take operation and after

operation respectively two rounding, two rounding treatment of different lead

to its lowest level in some cases the results are 1.

Single precision operation instruction. When the FR bit of Status control

register is 0, abs. S, add.s, ceil. W.d, ceil. W.s, div. S, floor. W.s, floor.

Mov. s, CVT. S, CVT. S, CVT. S.d, CVT. S.w, CVT. W.s, movf. S,

movn. S, movt. S, movz. (in early MIPS processors, the FR bit represented

whether the floating point register was 16 or 32, and in MIPS64 the FR bit

represented whether the floating point register was 32 or 64).

7.3.3 Loongson custom extension floating point instruction

Table 7-5 custom extended floating point access instructions

Instruction
mnemonics

Command
function

description

GSSQC1 The dual source register stores the fixed point four words

GSSWLEC1 Saves a word from a floating point register with an
overbounds check

GSLWXC1 A floating-point word with an offset

124

GSLQC1 The dual target registers fetch floating point characters

GSLWLEC1 Bring the fetch word to the floating point register for
overbounds checking

GSLWLC1 Fetch the left part of the word to the floating point register

GSLWRC1 Fetch the right part of the word to the floating point
register

GSLDLC1 Take the left part of the word to the floating point register

GSLDRC1 Take the right part of the word to the floating point register

125

Instruction
mnemonics

Command
function

description

GSLWGTC1 Fetches a word to the floating point register with an
overbounds check

GSLDLEC1 Bring the fetch double word to the floating point register
with the overbounds check

GSLDGTC1 Fetch a double word to a floating - point register with the
down - bounds check

GSLDXC1 Fetch floating point doublet with offset

GSSWLC1 Saves the left part of the word from the floating point
register

GSSWRC1 Saves the right part of the word from the floating point
register

GSSDLC1 Saves the left part of the word from the floating point
register

GSSDRC1 Saves the right part of the word from the floating point
register

GSSWGTC1 Saves a word from a floating - point register with a down -
bounds check

GSSDLEC1 Save the double word from the floating point register with
the overbounds check

GSSDGTC1 Saves a double word from a floating point register with a
down - bounds check

GSSWXC1 Store floating point words with offset

GSSDXC1 Store floating point doubleword with offset

Table 7-6 custom extended floating-point format conversion instructions

Instruction
mnemonics

Command
function

description

The CVT
transmission.

D.L D

Extended double precision to double precision

The CVT
transmission.

LD. D

Double precision converted to extended double low
precision

The CVT
transmission.

UD. D

Double precision converted to extended double high
precision

7.4 Floating point part format

7.4.1 floating point format

FPU can operate on both 32-bit (single-precision) and 64-bit (double-

126

precision) ieee-compliant floating point Numbers. The 32-bit single-

precision format includes a 24-bit decimal field (F+S) represented by the

sign-amplitude and an 8-bit exponential field (E). The 64-bit double-

precision format includes a 53-bit symbol-amplitude representation of the

decimal field (F+S) and an 11-bit exponential field (E). The 64-bit double

precision (PS) format contains two single-precision floating point

formats.Respectively, as shown in figure

7-8 Shown below.

127

Figure 7-8 floating point format

As shown in figure 7-8, the format for floating point Numbers consists

of the following three fields:

 Sign field, S

 The biased exponential field, E = E + Bias, E is the non-biased exponential00

 In the decimal field, F=.bbb12 p–1

The range o f exponent E i s the in teger be tween a l l o f t hem, inc lud ing E

and E , p lu s the fo l low ing two reserved va lues : 0minmax

 E-1 (used to encode 0 and subnormal Numbers)min

 E +1 (used to encode infinity and NaN[Not a Number])max
For single-precision or double-precision formats, each representable

non-zero number has a unique encoding corresponding to it.The value V

corresponding to its encoding is determined by the equations in table 7-7.

Table 7-7 formulae for calculating the values of floating point Numbers in single-precision and double-precision formats

NO. The
form
ula

(1) If E0 = Emax+1 and F≠0, then V = NaN, regardless of s

(2) If E0 = Emax+1 and F = 0 , then V= (–1)S∞

(3) If Emin≤E0≤Emax, then V = (-- 1)S2 E0 (1.f)

(4) If E0 = Emin -- 1 and F≠0, then V= (-- 1)S2Emin(0.f)

(5) If E0 = Emin -- 1 and F = 0, then V = (-- 1)S0

PS 格式（双单精度
）

双精度格式 单精度格式

128

For all floating point formats, if V is an NaN, then the highest bit of F determines the number to be
Signaling

NaN or Quiet NaN: if the highest bit of F is set, then V is Signaling NaN, otherwise V is

Quiet NaN.Tables 7-8 define the values of some related parameters in floating point

format.The maximum and minimum floating point values are given in tables 7-9.

Table 7-8 floating point format parameter values

para
mete

r

form
at

 Single precision double

Emax + 127 + 1203

Emin - 126. - 1022.

Exponential
offset

+ 127 + 1023

Exponential bit
width

8 11

An integer bit Hidden Hidden

F (decimal
width)

24 53

Overall format
width

32 64

Table 7-9 floating point values for maximum and minimum Numbers

type value

Single precision floating
point minimum number

1.40129846 e - 45

The minimum normal
number of a single

precision floating point

1.17549435 e - 38

The largest single-
precision floating point

number

3.40282347 e

The smallest number in a
double-precision floating

point

4.9406564584124654 e - 324

The minimum normal
number for a double-

precision floating point

2.2250738585072014 e - 308

The largest number in a
double-precision floating

point

1.7976931348623157 e+308

7.5 Overview of FPU instruction pipeline

FPU provides an instruction pipeline parallel to the CPU instruction

129

pipeline. It shares the basic 9-level pipeline architecture with the CPU, but

the execution flow level is subdivided into 2-6 flow levels depending on the

floating point operation.Each FPU instruction is executed by one of two

floating point units: FALU1 or FALU2. FALU1 can perform all floating

point operations and media operations. FALU2 performs only floating-

point addition and subtraction, multiplication, multiplication and addition,

and all media operations.

Each FALU cell can receive one instruction per cycle and send one

result to the floating point register file.In each FALU unit, floating-point

addition and subtraction, floating-point multiplication, and floating-point

multiplication and addition require six cycles of execution.The format

conversion operation between fixed point and floating point needs 4

execution cycles.Floating point division takes between 4 and 16 cycles

depending on the operand.Depending on the operand, it takes between 4 and

31 cycles to open a square root of floating point, and 2 cycles for other

floating point operations

Cycle. In each FALU unit, if two instructions with different execution

cycles output the result in the same beat, in this case, the instruction with

shorter execution cycle takes priority to output the result to the bus.Floating-

point operations and all media operations except floating-point division and

floating-point root are fully pipelinized. If there are two floating-point

division instructions or two floating-point open square root instructions in

FALU1 at the same time, the FALU1 unit will send a stop signal to the

previous stream level, and the FALU1 unit will not receive new instructions

until the division or open square root instruction is written back.

7.6 Floating point exception handling

This section describes the exceptions to floating point calculations.

Floating point exceptions occur when FPU cannot handle operands or the

130

results of floating point calculations in a normal way, and FPU generates an

exception to start the corresponding software trap or to set the status flag bit.

The FPU control and status registers contain an enabling bit for each type of

exception, which determines whether an exception is

Can cause FPU to start an exception trap or to set a status flag.

If a trap is started, FPU maintains the state at which the operation started

and starts the software exception processing path;If no trap is started, an

appropriate value is written to the FPU target register and the calculation

continues.

FPU supports five IEEE754 exceptions:

 Inexact (I)

 Underflow Underflow (U)

 Overflow Overflow (O)

 Division by Zero of Z.

 Invalid Operation (V)

And the sixth exception:

 Unimplemented Operation (E)
Unimplemented operation exceptions are used when FPU cannot execute

the standard MIPS floating point structure, including when FPU cannot

determine the correct exception behavior.This exception indicates the

execution of the software exception handling. The unimplemented operation

exception does not enable the signal and flag bit, and when this exception

occurs, a corresponding unimplemented exception trap occurs.

Each of the five exceptions (V, Z, O, U, I) of IEEE754 corresponds to a

user-controlled exception trap, which is allowed to occur when one of the

five enabled bits is set. When the exception occurs, the corresponding Cause

bit is set. If the corresponding Enable bit is not set, the exception Flag bit is

set.If the enable bit is set, the flag bit is not set, and FPU generates an

exception to the CPU.Subsequent exception handling allows the exception

131

trap to occur.

When there are no exception trap signals, the floating-point processor

handles them by default, providing a floating-point calculation exception

The substitution value of the fruit. Different exception types determine

different default values.Table 7-10 lists the default handling of FPU for each

IEEE exception.

Table 7-10 default handling of exceptions

The
domain

desc
ribe

Rounding
mode

The
default
action

i. Inexact
exception

Any Provide rounding results

U

Underflow
exception

RN Set the result to zero according to the symbol of the intermediate
result

RZ Set the result to zero according to the symbol of the intermediate
result

The
RP

Correct positive underflow to a minimum positive number and
negative underflow to minus 0

The
RM

Correct negative underflow to a minimum negative number and
positive underflow to +0

O

Overflow
exception

RN Set the result to infinity according to the symbol of the
intermediate result

RZ Maximize the result according to the symbol of the intermediate
result

The
RP

Correct negative underflow to the maximum negative number and
positive underflow to plus infinity

The
RM

Correct positive underflow to the maximum integer and negative
underflow to minus infinity

Z Be zero
except

Any Provides a corresponding signed infinite number

V Illegal
operation

Any Provide a Quiet Not a Number(QNaN)

The following describes the conditions that lead to each exception in

FPU and describes in detail the FPU's response to each exception.

Imprecision exception (I)

The FPU generates an imprecise exception when:

 Rounding results are not accurate

 Rounding results overflow

 Rounding results underflows, and underflows and imprecise enable bits are not set, and the
FS bit is set.Trap enabled result: if an imprecise exception trap is enabled, the result register
is not modified, and the source

132

Registers are retained. Because this execution mode affects

performance, the imprecise exception trap is enabled only when necessary.

Trap not enabled results: if no other software trap occurs, the rounded or

overflowed results are sent to the target register.

Illegal operation exception (V)
The exception to an illegal operation is signaled when two or one of the

operands of an executable operation is illegal.If the exception is Not caught,

MIPS defines the result as a Quiet Not a Number (QNaN).Illegal operations

include:

 Addition or subtraction: infinite subtraction. For example :(+∞)+(-∞) or (-∞)-(-∞).

 Multiplication: 0 times infinity, for all positive and negative Numbers

 Division: 0/0, ∞/∞, for all positive and negative Numbers

 The operand when the Unordered comparison operation is not processed is Unordered

 Perform a floating-point comparison or conversion on an indicator NaN

 Any mathematical operation on SNaN (Signaling NaN).This exception is caused when one of the

operands is SNaN or when both operands are SNaN (MOV operations are not considered mathematical

operations, but ABS and NEG are considered mathematical operations)

 The square root: X, when X is less than 0
Software can simulate exceptions to illegal operations of other given

source operands. For example, in IEEE754, specific functions are

implemented by software: X REM Y, where Y is 0 or X is infinite;Or

overflows when floating point Numbers are converted to decimal, which is

infinity or NaN;Or a prior function such as ln of 5 or cosine of 3.-1

Trap enabled result: the value of the source operand is not sent.

Trap not enabled result: if no other exception occurs, QNaN is sent to

the target register.

Except for zero (Z)

In a division operation, when the divisor is 0 and the dividend is a finite

number that is not zero, a signal is sent that the divisor is zero.Software can

be used to generate symbolic infinities for other operations, such as ln(0),

sin(PI /2), cosine (0), or 0.-1

133

When the trap is enabled: the result register is not modified and the

source register is retained.

Trap failure: if no trap occurs, the result is a signed infinity.

Overflow exception (O)

When the magnitude of the rounded floating point result is represented

by an unbounded exponent, the upper overflow exception sends a notification

signal when the target mode greater than the maximum represents limited

data.(this exception sets both the inexact exception and the flag bit)

When the trap is enabled: the result register is not modified and the

source register is retained.

Trap failure: if no trap occurs, the final result is determined by the

rounding pattern and the symbol of the intermediate result.

Underflow exception (U)

134

Two related events led to the overflow exception:

 A very small non-zero result between ±2, which is very small, leads to a subsequent

overflow exception.Emin

 Denormalized Number is used to approximate the serious data distortion generated by

these two small data.

IEEE754 allows these events to be detected in many different ways, but the same method is

required for all operations. Small data can be detected using one of the following methods:

 After rounding (if a non-zero data is calculated in the case that the exponential range is not bounded, it

should be strictly between ±2)Emin

 Before rounding (if a non-zero data is calculated in the case that there is no limit between the exponent

and the precision range, it should be strictly between ±2)Emin

The structure of MIPS requires small data to be detected after rounding.

Accuracy distortion can be detected by one of the following methods:

 Distortion of subnormal data (when the resulting result is different from the calculated result when there is no

bound to the exponent)

 Inexact data (when the resulting result is different from the calculated result when the exponent and precision
range are not bounded)

The MIPS structure requires the accuracy distortion to be detected to

produce inaccurate results.

Trap enabled: if the overflow or imprecise exception is enabled, or the

FS bit is not set, an unimplemented operation exception is generated and the

result register is not modified.

Trap not enabled: if the overflow or imprecision exception is not

enabled, and the FS bit is set, the final result is determined by the rounding

mode and the symbol bit of the immediate result.

Unimplemented operation exception (E)

Unimplemented operations in the FPU control/status register cause bits

to be set and trap when any opcodes or operation format instructions are

executed that are reserved for later definitions.The source operands and

135

destination registers remain unchanged while the instructions are emulated in

the software. Any of the exceptions in IEEE754 can be generated from the

simulation operation, which in turn can be simulated. In addition,

unimplemented instruction exceptions can occur when the hardware fails to

properly perform some rare operation or result condition.These include:

 Denormalized Operand, except for comparison instructions

 Quite Not a Number operand (QNaN), except for the comparison instruction

 Subnormal data is either overflowed, and the overflowed or imprecisely enabled signal is set while the FS bit is not set

buy

Note: subnormal and NaN operations only enter the trap in the transformation or computation instruction,
not in the MOV instruction

The trap.

When the trap is enabled: the original operation data is not sent. The

trap cannot be disabled.

136

8 Performance analysis and optimization

This chapter provides some information related to software performance

optimization in the loongson 3A1000 architecture, including instruction

delay and the interval of instruction loops, extension instructions, instruction

flow and storage access processing, etc., for reference by compilers and other

software developers.

8.1 Delays and cycle intervals for user instructions

Table 8-1 shows the delays and cycle intervals for all user instructions

executed in the alu1/2, MEM, falu1/2 function units, excluding kernel

instructions and control instructions.The instruction delay here is the number

of beats (one processor cycle per beat) needed for the instruction to be

transmitted to the result that it can be used by the next instruction.For example,

most ALU instructions have a delay of 2, which means that the result of an

ALU instruction can only be used by subsequent instructions after a

beat.Therefore, a correlation loop (the next loop depends on the result of the

previous loop) in the form of I = I + 1 cannot produce a result per beat.The

cycle interval of an instruction refers to the frequency at which the functional

unit receives the instruction. 1 means that each beat can receive more than one

of the same kind of instruction, and n means that after the functional unit

receives one of the same kind of instruction, it can only receive the same kind

of instruction after n-1 beats.The command cycle interval of the all-flow

feature is 1.

Table 8-1 loongson 3A1000 instruction delay

Instruction type Perform component delay Loop interval

The integer operation

The add/sub/logical/shift/lui/CMP ALU1/2, 2 1

The trap/branch ALU1 2 1

MF/MT HI/LO ALU1/2, 2 1

(D) MULT (U) ALU2 5 2

137

(D) MULT G (U) ALU2 5 1

(D) DIV (U) ALU2 2-38 10-76.

(D) DIV G (U) ALU2 2-38 4-37

(D) MOD G (U) ALU2 2-38 4-37

The load MEM 5 1

store MEM - 1

Floating point operations

(D) MTC1 / MFC1 (D) MEM 5 1

Abs/neg/Arthur c. ond/bc1t/bc1f/move/CVT * FALU1 3 1

Round/trunc ceil/floor/CVT * FALU1 5 1

The add/sub/the mul/madd/msub/nmadd/nmsub FALU1/2, 7 1

Div. S FALU2 5-11 4-10

Div. D. FALU2 5-18 4-17

SQRT.. s. FALU2 5 to 17 4-16

SQRT.. d FALU2 5-32 4-31

Lwc1, ldc1 MEM 5 1

Instruction type Perform component delay Loop interval

Swc1, sdc1 MEM - 1

For table 1, there are several additional comments:

The loop interval for load/store operations here does not include LL/SC. LL/SC is waiting for

launch operations and can only be launched if they are at the head of the reorder queue and the cp0

queue is empty at this time.

There are no special usage restrictions for the HI/LO register.They are used like other

general purpose registers. This table does not contain CTC1/CFC1.They are serialized like many other

control instructions.

This table also does not contain multimedia instructions. Because they are done by extending the format

of ordinary floating point instructions, they have the same units of functionality and latency as the extended

instructions.

8.2 Instruction expansion and usage considerations

Loongson 3A1000 has completed the following command extensions:

Write only a fixed point multiplication and division of the result to the general register. It

includes 12 instructions: (D)MULTG, (D)MULTUG, and (D)DIVG

MODG DIVUG (D), (D), (D) MODUG

In the standard MIPS instruction set, multiplication and division require writing two special

result registers (HI/LO) in one operation, which are difficult to implement in a RISC pipeline.In

138

order to use these results, it would have to be taken out of HI/LO and into the general purpose

register with an additional instruction.To make matters more complicated, many MIPS processors

have some limitations on the use of these instructions due to pipelining issues.These new

instructions are faster to execute and easier to use.

Due to the register renaming implementation, on the loongson 3A1000 processor, the

relevant instructions in the standard MIPS instruction set involving the HI/LO register operation

can only be executed after all the instructions in the processor instruction queue before these

instructions are submitted, which will cause the pipeline to stop.However, there is no HI/LO

register rename problem in the pipeline when using the above extended instructions, and these

instructions will not be blocked.Therefore, when writing programs using assembly instructions,

you should try to use the extension instructions above.If you do need to use HI/LO results, such as

high 64 bits, after 64-bit multiplication, then the programmer should be aware of the impact of

using the standard MIPS multiplication instruction on the pipeline.

Fixed-point operations use floating point data paths:

Floating point data paths are often idle during the execution of fixed-point programs, and

these instructions give us the opportunity to take advantage of them to further increase the degree

of instruction parallelism.

139

8.3 The compiler USES prompts

The open source compiler suite GCC currently supports the loongson 3A1000 processor

architecture tuning option.In version GCC4.6.0 and above, -march=loongson3A can be used to

describe the pipeline of the processor for code scheduling, and the generated code can also make

full use of the instruction expansion of loongson 3A1000.In most cases, this option provides a

performance boost on the loongson 3A1000 processor.

In addition, during our space exploration of the compiler tuning of the SPEC CPU2000 benchmark set, we

concluded that the following GCC compilation options might improve the performance of the godson 3A1000

processor.In the process of fine tuning the program, the following options have some reference significance.

8.4 Instruction stream

Loongson 3A1000 is a multi-emission highly parallel processor. The processing of an

essentially serial instruction stream may have a significant impact on program performance. This

section discusses issues such as instruction alignment, transfer instructions, and instruction

scheduling.

8.4.1 Instruction aligned

In one cycle, loongson 3A1000 can fetch four instructions from a single cached line, but the

four instructions cannot cross the boundaries of the cached line.We should properly align the basic

- fdefer - pop - fcaller - saves

- fno - move - loop invariants - fno - cprop - registers

- funroll - all - loops - fno - early - inlining

- ffunction - cse Floop - optimize

- fno - optimize - register - a move - fno - peephole

- freorder - blocks - fno - peephole2

- ftracer - fprefetch - loop - arrays

- ftree - MAC - fsched - spec - load - the dangerous

- fno - cse - follow - to - fschedule - insns2

Fno - math -- errno - fsignaling - nans

- fno - optimize - (- calls - fno - strength - reduce

- fno - peel - loops - fthread - to

- fsingle - precision - constant - fno - tree - copyrename

- ftree - loop - optimize - ftree - dominator - opts

- fno - branch - count - reg - ftree - vect - loop - version

140

blocks that are routinely executed to avoid crossing the boundaries of the cache line.In addition, if

there are transfer instructions in four instructions taken at one time, the efficiency of fetch

instruction will also be affected.If the first is a transfer branch instruction, and the transfer

prediction is successful, the last two instructions will be discarded.

141

If the last item is a transfer instruction, even if the transfer is successful, the processor will

have to take down another cache line to get the instruction in its delay slot.Loongson 3A1000 can

only decode one transfer instruction in one cycle. If there are two transfer instructions in a bundle

of instructions, it will need two cycles to complete the decoding, that is to say, the pointing part

will be blocked for one cycle.

8.4.2 The processing of transfer instructions

In the loongson 3A1000 processor, an unexpected change in the instruction flow address can

waste the time of about 10 instructions."Surprise" can be caused by instructions that transfer

successfully, or it can be caused by transfer prediction errors. For the current loongson 3A1000,

even a correctly predicted and predicted transfer is slower than sequential code, and it wastes a

cycle because the transfer target cache (BTB) cannot give the next correct program counter PC

value for a normal conditional transfer.

The compiler can reduce the overhead of the transfer instruction by:

The loongson 3A1000's transfer instruction prediction method is different from other high-

performance processors, and different versions have some slight differences.Based on profiling,

the compiler can rearrange the code location based on the actual transfer frequency, resulting in a

better prediction.

Make the base block as large as possible. A good optimization result is to have an average of

20 instructions between two successful transfers.In order to have at least 20 instructions between

them, this requires a loop expansion and the direct inlining of subroutines with fewer than 20

instructions.Loongson 3A1000 implements conditional movement instructions, which can be used

to reduce the number of branch instructions.Reorganizing the code by performing profiling also

helps with this optimization.

On loongson 3A1000, different transfer instructions make predictions in different ways:

Static prediction

For the likely class transfer instruction and the direct jump instruction. G - share predictor

A 9-bit global history register, GHR, and a schema history table, PHT, with 4K entries.For

conditions

142

Turn the finger. BTB (transfer target cache)

There is a fully associative cache of 16 entries.Used to predict the target address of a register

jump instruction.RAS (return address stack)

Four items that are used to predict the target address returned by the function.

Here are some things to note about software:

Special care needs to be taken with the likely class transfer instruction on the loongson

3A1000 processor.Although the likely class transitions

Instructions may be effective for simple static scheduling of sequential scalar processors, but

they are not as effective for modern high-performance processors.Because the transfer prediction

hardware of modern high-performance processors is relatively complex, they usually have a

correct prediction rate of more than 90%.(for example, loongson 3A1000 can correctly predict the

direction of a conditional transfer from 85% to 100%, with an average of 95%.) in this case, the

compiler should not use the likely class transfer command, which is not too predictive.In fact, we

found that GCC with the -mno-branch-likely option generally works better.

The decoding unit is divided into three stream segments, in which the transferred target

address is calculated in the third stage.A successful transfer instruction will result in a pause of

two cycles. That is to say, if a transfer instruction is taken out at cycle 0, the address of PC+16 is

taken out at cycle 1, and the address of PC+32 is taken out at cycle 2, the target address of the

transfer instruction will be taken out at cycle 3.So it would be helpful to reduce the number of

successful transfer instructions.

The BTB in the godson 3A1000 is only used for register jump instructions (no jr instructions

except jr31 and jalr).

A four-item RAS is used to predict the target address of the jr31 directive.The predictive

validity of the function return depends on the software that USES the jr31 instruction as the

function return instruction.

8.4.3 Increase of instruction flow density

The compiler should make the most of profiling to ensure that the bytes that are called into

the instruction Cache are executed.This requires that the target address of the jump instruction be

aligned and that code that is rarely executed be removed from the Cache line.

143

8.4.4 Instruction scheduling

Loongson 3A1000 has a relatively large instruction window for dynamic instruction

scheduling. However, due to the limited resources in the processor, the compiler can assist the

processor in better scheduling to some extent.Modern compilers (such as GCC) have instruction

scheduling support that puts loongson 3A1000's internal component resources and points to

The delay of the let (see table 1) tells the compiler that it can schedule better.

8.5 Memory access

The execution of Load-store instruction has a great influence on the performance of the

whole system. These instructions can be executed quickly if the level 1 data cache contains the

required content.If the data is only in the secondary cache, it is slightly slower, and if it is only in

main memory, there will be a large delay.However, out-of-order execution and non-blocking

caches can reduce the performance penalty of these delays.

The loongson 3A1000 consists of four on-chip second-level cache modules, each of which is

1MB in size, for a total of 4MB.Each module is organized as a four-way group. Loongson 3A1000

has a built-in DDR memory controller that minimizes

144

Memory access latency. The memory frequency and processor operating frequency of

loongson 3A1000 system can be configured separately, so as to increase the memory frequency as

much as possible and reduce the gap with the processing frequency, which is very conducive to

improving the performance of most applications.More information about the memory controller

can be found in the relevant section of the 3A1000 processor documentation.

Loongson 3A1000 provides the prefetch instruction, which can be loaded into the zero-point

register to prefetch data to the first-level data Cache.In addition, the DSP engine in loong chip 3

can prefetch the data in memory or IO into the second-level Cache. For details, please refer to the

relevant parts of the manual.

The compiler should minimize unnecessary storage access. The current logodson 3A1000

processor has a large memory instruction delay (four cycles even for a cache hit), and the

instruction window is not large enough to tolerate dozens of cycles of access delay.

The software also pays special attention to data alignment. Aggregates (arrays, some records,

subroutine stack frames) should be allocated on the aligned cache line boundaries so that the cache

lines can be aligned to the data path and the number of fast cache lines can be reduced.A compile

time warning should be generated for items in aggregates (records, normal blocks) that are forced

out of alignment (such as GCC's packed property).In loongson 3A1000, normal load/store

instructions have alignment requirements, and instructions that do not meet the requirements

should be implemented through kernel simulation.For example, taking a word (four bytes) from a

non-four-byte aligned address triggers an exception that is handled by the operating system;It

usually takes thousands of processor cycles for an operating system to accomplish this task.So the

user needs to know that these warnings represent code that may have poor performance. The code

that compiles the parameters defaults to the alignment of the parameters.Scalars that are frequently

used should reside in registers.

8.6 Other tips

Use all floating point registers. Although the O32 ABI only has 16 available for users, the

loongson 3A1000

32 64-bit floating point registers are provided.Using the N32 or N64 ABI can help take

advantage of processor performance. Use performance counters. The loongson 3A1000

performance counter can be used to monitor the real-time performance parameters of the

145

program.compile

Programmers and software developers can analyze the results to improve their code.

	Part ii
	Loongson technology co. LTD
	Copyright statement
	disclaimer
	Loongson technology co. LTD

	2.1 MIPS64 compatible instruction list
	2.1.3 Branch and jump instructions
	2.1.4 Coprocessor instruction
	2.1.5 Other instructions

	2.2 MIPS64 compatible instruction implementation related instructions
	2.2.1 There are instructions for implementation differences
	2.2.2 Disable the instruction

	2.3 Custom extension instructions
	2.3.3 Custom extensions to X86 binary translation acceleration instructions
	2.3.4 Custom extensions for 64-bit multimedia acceleration instructions
	2.3.5 Custom extension miscellaneous directive

	3 CP0 control register
	3.1 Index register (0,0)
	3.2 Random register (1,0)
	3.3 EntryLo0 (2,0) and EntryLo1 (3,0) registers
	3.4 The Context (4, 0)
	3.5 PageMask register (5,0)
	3.6 PageGrain register (5,1)
	3.7 Wired register (6,0)
	3.8 HWREna register (7, 0)
	3.9 BadVAddr register (8,0)
	3.10 The Count register (9,0) and the Compare register (11,0)
	3.11 EntryHi register (10,0)
	3.12 Status register (12,0)
	3.13 IntCtl register (12,1)
	3.14 SRSCtl register (12,2)
	3.15 Cause register (13,0)
	3.16 Exception Program Counter register (14,0)
	3.17 Processor Revision Identifier (PRID) register (15,0)
	3.18 EBase register (15,1)
	3.19 Config register (16,0)
	3.20 Config1 register (16,1)
	3.21 Config 2 register (16,2)
	3.22 Config 3 register (16,3)
	3.23 Load Linked Address (LLAddr) register (17,0)
	3.24 XContext register (20,0)
	3.25 Diagnostic register (22,0)
	3.26 Debug register (23,0)
	3.27 Debug Exception Program Counter register (24,0)
	3.28 Performance Counter register (25, 0/1/2/3)
	3.29 ECC register (26,0)
	3.30 CacheErr register (27, 0/1)
	3.31 The TagLo(28) and TagHi (29) registers
	3.32 Registers DataLo (28,1) and DataHi (29,1)
	3.33 ErrorEPC register (30,0)
	3.34 DESAVE register (31,0)
	3.35 CP0 instruction
	4 Organization and operation of a CACHE
	4.1 Summary of the Cache
	4.1.1 Non-blocking Cache
	4.1.2 Replacement strategy
	4.1.3 The parameters of the Cache

	4.2 First-order instruction Cache
	4.2.1 The organization of the instruction Cache
	4.2.2 Access to the instruction Cache

	4.3 Level 1 data Cache
	4.3.1 Organization of data Cache
	4.3.2 Access to the data Cache

	4.4 Level 2 Cache
	4.4.1 Organization of level 2 caches
	4.4.2 Access to the second level Cache

	4.5 Cache algorithm and Cache consistency properties
	4.5.1 Non-caching (Uncached, consistency code 2)
	4.5.2 Coherent cache (Cacheable coherent code 3)
	4.5.3 Non-caching Accelerated (Uncached Accelerated, consistency code 7)

	4.6 The Cache consistency
	5 Memory management
	5.1 Quick lookup of table TLB
	5.1.1 JTLB
	5.1.2 Instruction TLB
	5.1.3 Hit and miss
	5.1.4 A number of hits

	5.2 Processor mode
	5.2.1 Processor mode
	5.2.2 Mode of address
	5.2.3 Instruction set mode
	5.2.4 Tail model

	5.3 Address space
	5.3.1 Virtual address space
	5.3.2 Physical address space
	5.3.3 Virtual and real address translation
	5.3.4 User address space
	5.3.5 Manage address space
	5.3.6 Kernel address space

	5.4 System control coprocessor
	5.4.1 Format of TLB table entries
	5.4.2 CP0 register
	5.4.3 The process of converting a virtual address to a physical address
	5.4.4 TLB misses
	5.4.5 TLB instruction
	5.4.6 The code example

	5.5 Physical address space distribution
	6 Processor exception
	6.1 Exceptions are generated and returned
	6.2 Exception vector position
	6.3 Exception priority
	6.4 Cold reset exception
	6.5 NMI exception
	6.6 Address error exception
	6.7 TLB exception
	6.8 TLB refills the exception
	6.9 TLB invalid exception
	6.10 TLB modification is an exception
	6.11 Cache error exception
	6.12 Bus error exception
	6.13 The exception is integer overflow
	6.14 Trap exceptions
	6.15 System call exception
	6.16 Breakpoint exception
	6.17 Exception to reserved instruction
	6.18 An exception is not available for the coprocessor
	6.19 Floating-point exception
	6.20 EJTAG exception
	6.21 Interrupt exception
	7 Floating point coprocessor
	7.1 An overview of the
	7.2 FPU register
	7.2.1 Floating point register
	7.2.2 FIR register (CP1, 0)
	7.2.3 FCSR register (CP1, 31)
	7.2.4 FCCR register (CP1, 25)
	7.2.5 FEXR register (CP1, 26)
	7.2.6 FENR register (CP1, 28)

	7.3 Floating-point instructions
	7.3.1 MIPS64 compatible floating point instruction list
	7.3.2 MIPS64 compatible floating point instruction implementation
	7.3.3 Loongson custom extension floating point instruction

	7.4 Floating point part format
	7.5 Overview of FPU instruction pipeline
	7.6 Floating point exception handling
	8 Performance analysis and optimization
	8.1 Delays and cycle intervals for user instructions

	8.2 Instruction expansion and usage considerations
	8.3 The compiler USES prompts
	8.4.1 Instruction aligned
	8.4.2 The processing of transfer instructions
	8.4.3 Increase of instruction flow density
	8.4.4 Instruction scheduling

	8.5 Memory access
	8.6 Other tips

